Report Environmental Scoping Report for Brent Field Decommissioning EIA Shell (UK) Exploration & Production Report no/DNV Reg No.: EP021428 / 12NA8UG-7 Shell Brent Decommissioning Report No. BDE-F-GEN-HE-0702-00004 Rev 5, 24 May 2011 Decommissioning EIA #### Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Environmental Scoping Report for Brent Field Decommissioning EIA Cromarty House DET NORSKE VERITAS LTD, UK #### **MANAGING RISK** | Shell (U
1 ALTE
ABERI | Shell (UK) Exploration & Production 1 ALTENS FARM ROAD ABERDEEN United Kingdom | | | AB115AR Aberdeen, United Kingdon
Tel: +44 (0)1224 335000
Fax: +44 (0)1224 593311
http://www.dnv.com | | | | |-----------------------------|---|--|----------------------------------|--|--|--|--| | Date of | Date of First Issue: 4 June 2010 Proje | | | | No. EP021428 | | | | Report | No.: | | Organisati | on Unit: | Safety & Environmental | | | | Revisio | n No.: | Rev 5 (24 May 2011) | | | | | | | Summa | ry: | | | • | | | | | objective
Brent Fie | d to prepare an
e of this Scopin
eld decommissi | environmental Scoping Report is
g Report is to identify the poten | for the Decon
tially signific | nmissioning
ant environi
on in detail | to decommission the Brent Field, DNV was
EIA of Brent Field and Facilities. The key
mental, social and health impacts in the
in the EIA. The scoping methodology used | | | | Prepare | d by: | Name and Position Abidah Ilyas Senior Consultant Mark Purcell Principal Consultan Stavros Yiannoukas Consultant Øyvind Tvedten Senior Consulta | | Wordah Tyas Boxind Toedlan | | | | | Verified | l by | Name and Position
Steinar Nesse Director (Norway) | | Hi Nem | | | | | Approv | ed by: | Name and Position
Robert O'Keeffe, Associate Direct | etor | 25 | Day J | | | | | No distribution without permission from the client or respor organisational unit (however, free distribution for internal unit (however) after 3 years) | | | hin Index | ing Terms | | | | V | No distribution organisational u | without permission from the client unit | or responsible | Key
Words | | | | | V | Strictly confide | ential | | Servic
Area | e | | | | | Unrestricted dis | stribution | | Marke
Segme | | | | DNV Reg. No.: 12NA8UG-7 Revision No: 5 Date: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### **MANAGING RISK** | Rev. No. /
Date: | Reason for Issue: | Prepared by: | Verified by: | Quality
Check | Approved by: | |---------------------|--|-----------------------------|--------------|------------------|--------------| | Rev 0 / 04/06/10 | For Client Comment | ABI / PUR
/VIND | SNE | | FRANKK | | Rev 1 / 14/07/10 | Revised Report | ABI / PUR /
STAVR / VIND | SNE | GAFL | FRANKK | | Rev 2 / 12/10/10 | Final Draft Report | ABI / PUR /
STAVR / VIND | SNE | GAFL | FRANKK | | Rev 3
28/10/2010 | Final Report | ABI / PUR /
STAVR / VIND | SNE | GAFL | FRANKK | | Rev4
11/05/2011 | Final Report – IRG comments incorporated | ABI | PUR | GAFL | ROK | | Rev 5
24/05/2011 | Final Report – Table 3.3 and format issues | ABI | PUR | LHOLL | ROK | DNV Reg. No.: 12NA8UG-7 Revision No: 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### **Table of Contents** | Al | BBRE | VIATIONS | 1 | |----|------|--|----| | ΕΣ | KECU | TIVE SUMMARY | 2 | | 1 | INT | RODUCTION | 3 | | | 1.1 | Objective | 3 | | | 1.2 | Scope | 3 | | | 1.3 | Approach | 4 | | | 1.4 | Regulatory Context | 5 | | 2 | PRO | DJECT DESCRIPTION | 7 | | | 2.1 | Brent Alpha Overview | 8 | | | 2.2 | Brent Bravo Overview | 10 | | | 2.3 | Brent Charlie Overview | 12 | | | 2.4 | Brent Delta Overview | 14 | | | 2.5 | Pipelines Overview | 16 | | | 2.6 | Brent South | 18 | | | 2.7 | Provisional Materials Inventory | 19 | | 3 | ENV | VIRONMENTAL BASELINE SUMMARY | 20 | | | 3.1 | Key Environmental Sensitivities Offshore | 20 | | | 3.2 | Drill Cuttings & Marine Sediment Baseline Survey | 21 | | | 3.3 | Physical Nature of Drill Cutting Piles | 21 | | | 3.4 | Initial Screening Assessment of Cuttings Piles ' | 22 | | | 3.5 | Contents of GBS Cells | 22 | | | 3.6 | Environmental Baseline for Onshore Locations | 23 | | 4 | DEC | COMMISSIOING OPTIONS | 24 | | 5 | DES | SCRIPTION OF SCOPING METHODOLOGY | 26 | | | 5.1 | Scoping Workshop | 26 | | | 5.2 | Scoping Methodology | 26 | | | 5.3 | Workshop Findings | 26 | | 6 | SUN | MARY OF OUTPUT FROM SCOPING WORKSHOP | 28 | | | 6.1 | Category 1 – Steel Jacket | 29 | DNV Reg. No.: 12NA8UG-7 #### Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK | | 6.2 | Category 2 – Drill Cuttings | 31 | |----|-------|---|----| | | 6.3 | Category 3: Cell Contents | 32 | | | 6.4 | Category 4- Topsides | 34 | | | 6.5 | Category 5: GBS | 36 | | | 6.6 | Category 6: Pipelines | 38 | | 7 | РОТ | FENTIALLY SIGNIFICANT IMPACTS | 40 | | • | 101 | | | | 8 | EIA | APPROACH & FURTHER STUDIES | 45 | | | 8.1 | EIA Methodology | 45 | | | 8.2 | Approach to Assessing Some Key Environmental Issues | 45 | | | 8.2 | 2.1 GBS and Jackets | 46 | | | 8.2 | 2.2 Drill Cuttings | 46 | | | 8.2 | 2.3 Pipelines | 47 | | | 8.3 | Further Studies Required | 47 | | | 8.4 | Supporting Studies Being Undertaken | 48 | | | 1 | Provisional Material Inventory Scoping Workshop Checklists | | | Ap | pendi | x 2 Scoping Workshop Checklists | | DNV Reg. No.: 12NA8UG-7 Revision No: 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV #### **ABBREVIATIONS** **AET** Apparent Effects Threshold BA Brent Alpha BB Brent Bravo BC Brent Charlie BD Brent Delta BS Brent South **DECC** Department of Energy and Climate Change **DNV** Det Norske Veritas**EC** European Commission **E&E** Energy and gaseous Emissions **ERM** Effects Range Medium EIA Environmental Impact Assessment EIS Environmental Impact Statement FLAGS Far- north Liquid And Gas System GBS Gravity Base Structure HLV Heavy Lift Vessel HP High Pressure **HSE** Health, Safety & Environment **LP** Low Pressure NLGP Northern Leg Gas Pipeline PLEM Pipeline End manifold **PAH** Polycyclic Aromatic Hydrocarbon PCB Polychlorinated Biphenyls ROV Remotely Operated Vehicle THC Total Hydrocarbon Content SSIV SubSea Isolation Valve Tscf trillion standard cubic feet OSPAR The Oslo and Paris Commissions UKCS United Kingdom Continental Shelf VASP Valve Assembly Spool Piece WLGP Western Leg Gas Pipeline DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Page 1 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### **EXECUTIVE SUMMARY** Shell Exploration and Production UK (Shell UK) is presently preparing the plan to decommission the Brent Field, one of the largest hydrocarbon accumulations on the United Kingdom Continental Shelf. The Brent Field has four platforms (Brent Alpha, Bravo, Charlie and Delta), three are concrete gravity base structures (GBS) and one is a steel jacket. Decommissioning of offshore oil and gas facilities has the potential to impact both the environment and society, and an Environmental Impact Assessment (EIA) will need to be conducted to ensure issues are identified and then managed responsibly. DNV was requested to prepare an environmental Scoping Report for the Decommissioning EIA of Brent Field and facilities. The key objective of this Scoping Report is to identify the potentially significant environmental, social and health impacts in the Brent Field decommissioning programme that will require examination in detail in the EIA. There are a number of alternative decommissioning options that are covered in this Scoping Report. As planning and preparation for the decommissioning of the field continues, some of the options examined in this scoping report may be modified. In addition, some options may not be taken forward into the full EIA because they pose unacceptably high technical and safety risks. The report covers all stages of decommissioning: preparation, clean-up, removal operations, transport, onshore recovery/destruction/dismantling and final use/disposal. #### This report: - Provides general descriptions of the Brent Field structures, including Brent Alpha, Bravo, Charlie and Delta, pipelines and Brent South (Section 2). - Describes the environmental baseline of the study area, highlighting the key environmental sensitivities, characterising the drill cuttings (physical and chemical), and describing current knowledge regarding the GBS cell contents (Section 3). - Outlines the various alternative decommissioning options being considered (Section 4). - Describes the approach and the systematic scoping methodology (EC scoping guidelines) that was applied at a DNV scoping workshop in Norway to identify the potentially significant issues (Section 5). - Identifies and discusses the potentially significant environmental, social and health impacts in the Brent Field decommissioning programme that will require examination in detail in the EIA (Sections 6 & 7). - Discusses the broad approach to how the EIA could be conducted, discusses
key issues (such as legacy issues) and highlights the further studies that may be required for the EIA (Section 8). DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 1 INTRODUCTION The Brent Field, discovered in 1971, was one of the largest hydrocarbon accumulations on the United Kingdom Continental Shelf (UKCS). The field has four platforms (Brent Alpha, Bravo, Charlie and Delta); three are concrete gravity base structures (GBS) and one is a steel jacket. Oil is transported by pipeline through the Brent system to Sullom Voe, Shetland Islands. Gas is transported to the St. Fergus Scottish terminal via the FLAGS (Far-North Liquid and Gas System) pipeline. Decommissioning of the Brent Field is likely to be the largest decommissioning project in the UK sector of the North Sea. Decommissioning of offshore oil and gas facilities has the potential to impact the environment and society, both in the short- and long-term, owing to the hydrocarbons contained within the facilities and other issues such as hazardous substances, waste production, energy consumption, drill cuttings, and impact on shipping and fisheries. As a result, it is important to examine the potential impacts by conducting an Environmental Impact Assessment (EIA) to ensure issues are identified so that they can be managed responsibly and effectively. Following a meeting with the Shell UK Brent Decommissioning HSE Manager and Environmental Advisor on the 3rd March 2010, DNV UK was requested to prepare an environmental Scoping Report for the Decommissioning EIA of Brent Field and Facilities, drawing on the offshore decommissioning experience of DNV Norway. This Scoping Report provides a description of the installation, summarises the current environmental baseline of the study area, and identifies the issues with potential for significant impact that will require examination in the EIA. #### 1.1 Objective The key objective of this Scoping Report is to identify the potentially significant environmental, social and health impacts in the Brent Field decommissioning programme that require examination in detail in the EIA. DNV have conducted this scoping study based on an accepted European Commission scoping methodology, using data provided by Shell UK. #### 1.2 Scope The Scoping Report covers the facilities listed below and all stages of the decommissioning process, namely preparation, clean-up, removal operations, transport, onshore recovery/destruction, and final use/disposal: - 4 Topsides -Brent Alpha, Bravo, Charlie and Delta - 1 Jacket Brent Alpha - 3 Gravity Base Structures (GBS) Brent Bravo, Charlie and Delta - External Drill Cuttings pile at Brent Alpha, Bravo, Charlie, Delta and Brent South - Content and Sediment inside GBS storage cells (Cell sediments) at Brent Bravo, Charlie and Delta - Pipelines and Umbilicals Brent Field, Brent South, and pipelines/PLEM (Pipeline End manifold) to Brent Spar (removed). DNV Reg. No.: 12NA8UG-7 For each of the facilities, Shell (UK) has identified one or more decommissioning options, and these are examined in this Scoping Report (see Section 4). No baseline data was collected as part of this scoping study, and no site visit was undertaken. BRENT DECOMMISSIONING **BRENT D BRENT C BRENT SPAR** PLEM 28i GAS LINE **BRENT FLARE** (Removed) **BRENT SOUTH** (Removed) Figure 1.1: Brent Facilities #### 1.3 Approach The broad approach taken in conducting the scoping study is outlined below: - Kick Off Meeting: this was held on 21 April 2010 between DNV and Shell UK at DNV Aberdeen office to agree and finalise: - the scope - the suitability of EC Guidance on Scoping EIA methodology (refer to Section 5.0 for description) DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA - the decommissioning options being considered for the various facilities. - Information Review: Data provided by Shell UK and reviewed by DNV included: - Environmental baseline details for the Brent facilities and surrounding area - General descriptions of the Brent Field structures and status - Programme of Works and various documentation on Shell's evaluation of different re-use, decommissioning and disposal options. - 2 day DNV internal Scoping Workshop in Stavanger, Norway using agreed methodology - Reporting - Presentation of findings to Shell UK by DNV in Aberdeen. #### 1.4 Regulatory Context The Brent Field decommissioning project will be subject to the requirements of UK and EU legislation, in addition to other international treaties and agreements. Legislation in relation to the environmental issues with the project will apply to the removal of the platform and infrastructure as well as to the subsequent disposal of the removed material. The UK's Department of Energy and Climate Change (DECC) operates a comprehensive regime controlling the decommissioning of oil and gas installations and pipelines. Some key pieces of legislation are: • The Offshore Petroleum Production and Pipelines (Assessment of Environmental Effects) (Amendment) Regulations 2007 The Regulations implement in the UK for offshore oil and gas operations the requirements of EC Directive 85/337/EEC on The Assessment of the Effects of Certain Public and Private Projects on the Environment. #### • Petroleum Act 1998 The Petroleum Act 1998 sets out requirements for undertaking decommissioning of offshore installations and pipelines including preparation and submission of a Decommissioning Programme. The Decommissioning Programme must include a summary of the comparative EIA. Guidance notes are provided by DECC to those engaged in preparing decommissioning programmes; *Decommissioning of Offshore Installations & Pipelines under the Petroleum Act* 1998 (revised in 2010). #### • OSPAR Decision 98/3 OSPAR Decision 98/3 mandates that offshore facilities are re-used, recycled or finally disposed of on land. The topsides of all offshore platforms must be returned to shore and all installations with a steel substructure (jacket) weight of 10,000 tonnes or less must be completely removed to shore. The OSPAR decision also recognises that there may be difficulty in removing some structures and as a result exceptions from the main rule, known as derogations, can be granted. The assessment criterion for granting derogation requires that any proposal for an alternative approach must be demonstrated to be preferable to complete removal. Where such options involve an DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA intolerable safety risk or major unacceptable environmental risk, these will be ruled out without further consideration. Otherwise the assessment will be based on a balanced judgement of safety, environmental, technical, societal and economic risks. Decommissioning will normally remove the whole of the installation but derogation may be considered for: - Footings of large steel jackets weighing more than 10,000 tonnes. (With respect to the Brent Alpha jacket, 'Footings' means those parts of the steel installation which are below the highest point of the piles which fix the jacket to the seabed.) - Concrete gravity base structures - Exceptional circumstances, for example, where for safety or technical reasons it can be demonstrated that structural deterioration or damage would make removal of the installation impossible. OSPAR Decision 98/3 requires that assessment of a decommissioning option takes into account the cumulative environmental and socio-economic effects of other platforms being decommissioned and left in place in whole or part in the general area. #### • OSPAR Recommendation 2006/5 on a management scheme for offshore cuttings piles This outlines the approach for the management of cuttings piles offshore, with the purpose of reducing the impacts of pollution by oil and/or other substances to a level that is not significant. The cuttings pile management regime is divided into two stages. - Stage 1 requires the initial screening of all cuttings piles within 2 years of the Recommendation taking effect (30 June 2006). - Stage 2 calls for a Best Available Technique (BAT) and/or Best Environmental Practice (BEP) assessment and should, where applicable, be carried out in a timeframe determined in Stage 1. The Stage 1 screening is to be carried out by assessing the rate of oil loss from the cuttings pile to the water column over time, compared to a threshold (10 tonnes per year). The persistence of the cuttings pile should be assessed on the basis of the area of the seabed where the concentration of oil in the sediment remains above 50 mg/kg compared to a threshold of 500km²yrs. Where both the rate and persistence are below the thresholds and no other discharges have contaminated the cuttings pile, no further action is necessary and the cuttings pile may be left *in situ* to degrade naturally. Where either the rate of oil loss or the persistence are above the thresholds, Stage 2 should be initiated, taking into account the rate of oil loss, the persistence over the area of seabed contaminated and the timing of the decommissioning of the associated installation. DNV Reg. No.: 12NA8UG-7 #### 2 PROJECT DESCRIPTION The Brent Field is located in the East Shetland Basin of the Northern North Sea approximately 100 nautical miles northeast of Shetland, as illustrated in the two figures below. Brent D 61*0'0"N 56 201 The D Figure 2.1: Location of Brent Field DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Page 7 Figure 2.2: Location of Brent Field #### 2.1 Brent Alpha Overview Brent Alpha (Figure 2.3) is a fixed steel jacket installation comprising six tubular steel legs and a fabricated plate girder truss. The installation stands on the seabed in a water depth of approximately 140m, and is secured to the seabed by piles at the base of each of the six main
legs. A fabricated steel truss deck is supported on the jacket, together with modules containing facilities including Production Modules, Living Quarters and Drilling Modules. Two pedestal cranes are installed on the Installation; one on the east side, the other on the west side. A flare boom is also mounted. Total topside dry weight is estimated to be 16,605 tonnes. Jacket weight (in air) is estimated to be 14,225 tonnes (excluding piles and grout). A remote flaring facility was located 3.1km from Brent Alpha but this was removed during 2005. A decommissioned subsea tieback (Brent South) historically produced over the installation, but has since been disconnected although the Brent South pipelines are within the scope of this study. DNV Reg. No.: 12NA8UG-7 Oil and gas processing on Brent Alpha has now ceased with all production now tied back to Brent Bravo. There are a number of pipelines also connected to Brent Alpha (see Figure 1.1). Figure 2.3: Brent Alpha General Configuration DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 2.2 Brent Bravo Overview Brent Bravo (Figure 2.4) is a three leg concrete gravity base structure (GBS), with a base of 19 reinforced concrete cells (of which three form the leg bases and 16 can be used for oil or ballast water storage). The installation stands on the seabed, in the water depth of approximately 144.2 metres. A cellular lower deck, formed from interconnecting steel deep plate girders, supports modules containing facilities. The Brent Bravo substructure is a "Condeep" design and comprises a total of 19 cells which are arranged in a hexagonal-shaped honeycomb caisson which sits on the seabed. The caisson is secured laterally by 4m steel skirts which penetrate the seabed. Three of the cells extend upwards to form the supporting legs whilst the remaining 16 are capped off below sea level to form cells for storing crude oil. The storage cells operate in a completely flooded condition. The storage cells are connected into four groups in respect of oil input. In general, one group is filled with oil, two groups are settling and one group is for exporting oil. The total substructure base area is $6,360\text{m}^2$ and its estimated dry weight in air is 308,064 tonnes including ballast. The 16 storage cells are each approximately 56 metres high and the three supporting legs are each 163 metres high. The three legs support the topsides, see Figure 2.2, which comprise the cellar/lower deck with the module deck situated above this structure, and the drilling deck located at the top. The flare tower is situated at the southern end of the Installation on top of the Replacement Process Module. Total topside dry weight is estimated to be 24,095 tonnes. There are a number of pipelines also connected to Brent Bravo (see Figure 1.1). DNV Reg. No.: 12NA8UG-7 Figure 2.4: Brent Bravo DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 2.3 Brent Charlie Overview The Brent Charlie Platform (Figure 2.5) is a concrete gravity base installation of a Sea Tank design. The substructure comprises a 57.3 m high caisson consisting of 32 cells and four concrete legs which extend upward from the floor of the caisson to a height of 148.9 metres above the seabed. The superstructure comprises the lattice girder cellar deck compartments, module deck and drilling deck modules. It is supported on four steel transition pieces, each 15.7 metres high, which are connected to the top of the concrete legs. The total substructure base area is 10,340 m² and its overall weight in air is approximately 290,516 tonnes including ballast. The cells operate in a completely flooded condition. Ten of the cells are used for oil storage, and are arranged in 4 independent groups in respect of oil input. In general production operations, one group is filling with oil, one group is used for exporting oil, one group is used for storage and one set is designated for use as diesel storage. There are a number of pipelines also connected to Brent Charlie (see Figure 1.1). Dry topsides weight is estimated to be 31,048 tonnes. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Page 12 Figure 2.5: Brent Charlie General Arrangement DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 2.4 Brent Delta Overview Brent Delta (Figure 2.6) is a three leg concrete gravity structure of a 'Condeep' design, similar to that of Brent Bravo. The Brent Delta substructure comprises a total of 19 cells which are arranged in a hexagonal-shaped honeycomb caisson which sits on the seabed. The caisson is secured laterally by 5m steel skirts which penetrate the seabed (approximately 143.5 metres below LAT). Three of the cells extend upwards to form the supporting legs whilst the remaining 16 are capped off below sea level to form cells for storing crude oil. The total substructure base area is $6,360\text{m}^2$ and its weight in air is 318,850 tonnes including ballast. The 16 storage cells are each approximately 60 metres high and the three supporting legs are each 166 metres high. The three legs support a cellular lower deck, formed from interconnecting steel deep plate girders. This supports the topsides, which comprise the module deck and the drilling deck located at the top. The flare tower is situated at the southern end of the installation on top of the Replacement Process Module. Total topside dry weight is estimated to be 23,500 tonnes. There are a number pipelines connected to Brent Delta. DNV Reg. No.: 12NA8UG-7 Figure 2.6: Brent Delta General Configuration DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### 2.5 Pipelines Overview All the pipelines will be decommissioned at the end of field life. However, the platform decommissioning will be phased; therefore some reconfiguration of the pipeline system may be required to maintain export routes from the Brent system until cessation of production. A reconfiguration study is currently under way and has identified a number of possible options for reorganising the subsea system. The Brent subsea facilities under assessment in this study are summarised in the following two tables. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Page 16 # Table 2.1: Brent System Pipelines and Umbilicals in Current or Future Use¹ | Line
No. | Service | From | То | Size
(inch) | Length
(km) | |----------------|--------------------------------------|-----------------------------|---------------------------|----------------|----------------| | N0301 | Oil export (now drains line) | Brent A | Brent Spar PLEM | 16 | 2.8 | | N0302 | Oil export (now drains line) | Brent B | Brent Spar PLEM | 16 | 2.3 | | N0304 | Oil Production | Brent D | Brent C | 20 | 4 | | N0303 | Oil Production | Brent B | Brent C | 24 | 4.6 | | N0405 | Gas Export | Brent D | Brent C | 24 | 4.2 | | N0404 | Gas Export | Brent C | Brent B | 30 | 4.4 | | N0501 | Oil Export | Brent C | Cormorant A | 30 | 35.9 | | N0403 | Gas Export | Brent B | Brent A | 36 | 2.3 | | N0310 | Oil Production | Brent A | Brent B SSIV | 14
Flexible | 2.3 | | N0311 | Oil Production | Brent A | Brent B SSIV | 12
Flexible | 0.27 | | N2801 | Control Umbilical | Brent B | Brent B SSIV | 2.5 | 0.4 | | N0201 | Gas Export | Brent A | VASP | 36 | 1.25 | | N0830 | SSIV Control Umbilical | Brent A | WLGP SSIV | - | 0.5 | | C0603 | Gas Import | NLGP SSIV | Brent A | 20 | 0.37 | | C0815 | SSIV Control Umbilical | Brent A | NLGP SSIV | - | 1.2 | | N0513
riser | Oil Production | Brent C SSIV | Brent C | 14
Flexible | 0.2 | | N0513 | Oil Production | Penguin DC5 | Brent Cs SSIV | 16 / 22
PiP | 52.1 | | N1141 | Gas Lift | Brent C | Penguin DC4 | 4 | ~57 | | N1845 | Control & Chemical Umbilical | Brent C | Brent C SSIV | 5 | 0.37 | | N1828 | Control & Chemical Umbilical | Brent C SSIV | Penguin UCS5 | 5 | 52.0 | | N0601 | Gas Export | WLGP SSIV | Brent A | 16 | 0.4 | | N1826 | Power Cable (Now owned by Fairfield) | Brent C | Dunlin | 5 | 21.9 | | N1844 | Power Cable | Brent B | Brent A | 5 | 2.9 | | N1141 | Gas Lift | Brent C | Gas Lift SSIV | 4 flexible | 0.37 | | N1141 | Gas Lift | Gas Lift SSIV | Penguins GL
Pipeline | 4 flexible | 0.07 | | N2845 | SSIV Umbilical Jumper | Penguins
Production SSIV | Penguins Gas
Lift SSIV | - | 0.02 | DNV Reg. No.: 12NA8UG-7 ¹ Brent Pipeline & Subsea Decommissioning Feasibility Study, Xodus Subsea, A-20028-S00-REPT-01-R01,February 2007 #### Table 2.2: Brent System Pipelines and Umbilicals Not in Use | Line
No. | Service | From | То | Size
(inch) | Length
(km) | |-------------|--------------------------------|--------------------|----------------|----------------|----------------| | N0303 | Pipeline section abandoned | Brent B | Brent C | 24 | 0.3 | | * | during construction | | | | | | N0401 | Flare Gas (not in use) | Brent A | Brent Flare | 28 | 3.0 | | | | | System | | | | N0402 | Flare Gas (not in use) | Brent B | Brent Flare | 36 | 2.6 | | | | | System | | | | N0402 | Pipeline sections abandoned | Brent B | Brent Flare | 36 | 0.75 | | *a | during construction | | System | | | | N0402 | Pipeline sections abandoned | Brent B | Brent Flare | 36 | 0.12 | | *b | during construction | | System | | | | N0952 | Flare Gas (not in use) | Brent Flare System | Brent Flare | 8" | 0.04 | | | | | System | | | | N0738 | Oil Production (not in use) | Brent S | Brent A | 10 | 5.0 | | N0739 | Oil Production (not in use) | Brent S | Statfjord DC | 10 | 1.8 | | N0913 | Water Injection (not in use) | Brent A | Brent S | 8 | 5.0 | | N9900 | Oil Production (not in use) | Well 211/29-7 | Brent B | 4 Flexible | 2.1 | | N9902 | Oil Production (not in use) |
Well 211/29-7 | Brent B | 4 Flexible | 2.3 | | N9903 | Oil Production (not in use) | N0405 midline tie- | N0513 pipeline | 24 | 1.7 | | Α | | in | crossing | | | | N9903 | Oil Production (not in use) | N0513 pipeline | N0303 midline | 24 | 2.9 | | В | | crossing | tie-in | | | | N0841 | Umbilical (not in use) | Brent A | Brent S | 4.5 | 5.3 | | N9901 | Control & Chemical Umbilical | Brent B | Well 211/29-7 | - | 2.1 | | | (not in use) | | | | | | C0801 | SSIV Control Umbilical (not in | Brent A | NLGP SSIV | - | 1.2 | | | use) | | | | | Note 1: Sections marked with an asterisk do not officially have a line number. The number assigned is based on the corresponding operational pipeline. Note 2: Superscripts "a" and "b" on lines N0301 and N0402 refer to geographically separate sections of the same abandoned pipeline. #### 2.6 Brent South The Brent South (BS) Field is approximately 5 kilometres south of the Brent Alpha (BA) platform. The Field comprised 2 production wells (BS-1 & BS-2), one water Injection well (BS-3) and one exploration and assessment well that was not developed. The Field was tied back to the Brent Alpha. Brent South has been abandoned. The Brent South production and water injection pipelines and control umbilical were put into Interim Pipeline Regime (IPR) during the abandonment of the three Brent South wells. The lines were flushed with deoxygenated seawater (injection water) down the water injection line and back to BA via the production line. Biocide/inhibitor/oxygen scavenger sticks were placed in each end of the three pipelines before blind flanges were installed. DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA The umbilical had a flushing loop head installed at the Brent South end, joining pairs of cores to allow them to be flushed from and back to Brent A. Six of the cores were successfully flushed. There was a blockage on the chemical / spare loop which meant that these lines could not be flushed, although reports that they were left filled with hydraulic oils rather than chemicals should be confirmed. The HP / LP loop failed during flushing, but it is unclear how complete the flushing process was when this occurred. It is likely that the level of cleanliness achieved during flushing of the pipelines for IPR will be sufficient for final decommissioning. For the umbilical, it is unlikely that the blocked core(s) could be unblocked in the future. # 2.7 Provisional Materials Inventory² Many different types of material have been used in the construction and operation of the Brent Field platforms in over 30 years of operation. Data has been synthesised from many sources to obtain the current provisional Materials Inventory presented in Appendix 1, and summarised in Table 2.3 below. **Table 2.3 Provisional Material Inventory** | Material | Alpha | Bravo | Charlie | Delta | South | All pipelines | Total (tonnes) | % | |---------------------------------|--------|---------|-------------|---------|-------|---------------|----------------|--------| | Steel topsides | 11,921 | 19,572 | 31,048 | 19,781 | N/A | N/A | 82,322 | 4.39 | | Steel support structure | 19,234 | 33,300 | 57,700 | 35,700 | N/A | N/A | 145,934 | 7.79 | | Grout (concrete) | 5,278 | 12,747 | 9,082 | 12,747 | N/A | N/A | 39,854 | 2.13 | | Risers steel | 345 | 302 | 385 | 78 | N/A | N/A | 1,110 | 0.06 | | Wells steel | 4,442 | 6,039 | 6,357 | 7,628 | N/A | N/A | 24,466 | 1.31 | | Other steel structures | 5,122 | 7,003 | 7,428 | 8,404 | N/A | 47,617 | 75,574 | 4.03 | | Stainless steel | 459 | 1,349 | 1,732 | 1,311 | N/A | N/A | 4,851 | 0.26 | | Copper & Copper-Nickel alloys | 174 | 396 | 510 | 407 | N/A | N/A | 1,487 | 0.08 | | Alloy steel | 216 | 285 | 329 | 276 | N/A | N/A | 1,106 | 0.06 | | Anodes | 407 | N/D | N/D | N/D | N/A | 100 | 507 | 0.03 | | NORM | 43 | 123 | 152 | 119 | N/A | N/D | 437 | 0.02 | | Asbestos | 4 | 9 | 9 | 9 | N/A | N/A | 31 | 0.00 | | Ethylene/Propylene & PVC | 104 | 65 | 88 | 72 | N/A | N/A | 329 | 0.02 | | Halon | 0 | 1 | 0 | 0 | N/A | N/A | 2 | 0.00 | | Rubber & Neoprene | 28 | 28 | 28 | 28 | N/A | N/A | 112 | 0.01 | | Insulation | 31 | 99 | 83 | 105 | N/A | N/A | 318 | 0.02 | | Lead | 11 | 6 | 13 | 11 | N/A | N/A | 41 | 0.00 | | Titanium | 28 | 31 | 32 | 31 | N/A | N/A | 122 | 0.01 | | Concrete (GBS and Pipelines) | N/A | 132,500 | 230,000 | 142,000 | N/A | 22,472 | 526,972 | 28.12 | | Coal tar coatings | 305 | N/D | N/D | N/D | N/A | N/A | 305 | 0.02 | | Paint (topsides) | 1,245 | 961 | 899 | 899 | N/A | N/A | 4,004 | 0.21 | | Ballast sand | N/A | 118,800 | N/A | 118,800 | N/A | N/A | 237,600 | 12.68 | | Sludge/sediments in cells (min) | N/A | 3,456 | 1,548 | 3,456 | N/A | N/A | 8,460 | 0.45 | | Interphase material | N/A | 352 | 720 | 330 | N/A | N/A | 1,402 | 0.07 | | Permanently trapped oil | N/A | 320 | 5,290 | 420 | N/A | N/A | 6,030 | 0.32 | | Oily water | N/A | 181,264 | 311,330 | 177,244 | N/A | N/A | 669,838 | 35.74 | | External cuttings | 6,506 | 5,227 | 12,239 | 2,373 | 2,016 | N/A | 28,361 | 1.51 | | Cuttings in legs | N/A | 4,799 | N /D | 4,799 | N/A | N/A | 9,598 | 0.51 | | Cuttings in tricells | N/A | 1,400 | N/D | 1,400 | N/A | N/A | 2,800 | 0.15 | | Seabed & Celltop debris | N/D | N/D | N/D | N/D | N/D | N/D | 0 | 0.00 | | Total | 55,903 | 530,434 | 677,002 | 538,428 | 2,016 | 70,189 | 1,873,973 | 100.00 | N/A = Not applicable to this structure N/D = No data available DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Page 19 ² Based on Brent Decommissioning Provisional Material Inventory, Sigma3 (North Sea) Limited, BDE-80-SH-0003 A1, 16 May 2007 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 3 ENVIRONMENTAL BASELINE SUMMARY A significant amount of work has been conducted by Shell UK to date in assessing the environmental baseline of the Brent Field area. This section does not attempt to comprehensively summarise or critique such work, but only seeks to set the context for this scoping study. #### 3.1 Key Environmental Sensitivities Offshore The following table has been reproduced³ in a simplified format and shows the general baseline features within Brent Field. Table 3.1 Key Environmental Sensitivities of the Brent Field | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | OCT | NOV | DEC | |---
--	--	--	--
--|--|---|--| | Plankton | | | | | | | | | | | | | | Plankton c | ommuniti | es are vulne | rable to dis | charges of | oil and che | micals. F | Plankton is | widely dis | tribut | ed across | the North S | Sea. | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | | Benthic fa | auna | l | | | 1 | | | l e | <u> </u> | | | | | | | s in the stud | lv area are | similar to | those found | d through | nout surrou | ndina are | a of r | northern N | Jorth Sea a | nd no ra | | | | to occur i | , | | | | | | | | | | | • | | ed sediment | | | | | | | | | | ricrabic | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | | ish | | | | | | | | | | | | | | _ | Legineido | s with spawr | sing arose o | of and had | dock saiths | and Nor | augu pout | and nurs | N / D F / | one used b | ov madkard | haddae | | | | s with spawi
ie whiting. | | | | | | | | | | | | | | ie willung.
Ire vulnerabl | | | | | | | | | | | | | | sh/shellfish li | | | | | | | | | y during eg | y, lai vai | | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | | | | | | | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | | eabirds | | | | | | | | | | | | | | | | guillemots a | | | | | | | | | | | | | | of the sea | | | | nerability | to pollutio | n in the | vicinit | y of the E | Brent Field | is low, b | | here are j | periods of | high sensit | ivity in July | and Novel | <i>mber</i> . | | | | | | | | | 3 | 3 | 4 | 4 | 4 | 4 | 2 | 4 | 3 | | | | 4 | | arbour po
een reco
djacent o | orpoises a
orded in s
quadrants | and white-si
surrounding
in July, wit | ded dolphii
quadrants.
h other spe | ns have be
<u>High nur</u>
ecies being | een recorded
mbers of po | d in the a
prpoises h | area of Bre
nave been
oderate nur | ent; minkerecorded | e wha
in Qu
ougho | adrant 21
out the ye | l1 in Febru
ar. Cetace | have a
ary and
an spec | | larbour po
been reco
adjacent o
bresent in | orpoises a production of the area of the area | and white-si
currounding
in July, wit
are genera | ded dolphii
quadrants.
h other spe
lly distribut | ns have be <u>High num</u> ecies being ted through | een recorded
in recorded in
thout the No | d in the a
prpoises h
n low/mo
orth Sea. | area of Bre
nave been
oderate nur
Marine m | ent; minkerecorded nbers thrammals a | e wha
in Qu
ougho
are po | ales and ki
uadrant 21
out the ye
otentially v | iller whales
11 in Febru
ar. Cetace | have a
ary and
an spec | | larbour po
been reco
adjacent o
bresent in | orpoises a price in second in second in second in second in the area ce, injury to | and white-si
urrounding
in July, wit
are genera
from collisio | ded dolphii
quadrants.
h other spe
illy distribut
ns with ves | ns have be
<u>High nur</u>
ecies being
ted through
sels, oil spi | een recorded
in recorded in
hout the No
ills and cher | d in the a
prpoises h
n low/mo
orth Sea. | area of Bre
nave been
oderate nur
Marine m | ent; mink
recorded
nbers thr
ammals a
n availabi | e wha
in Qu
ougho
are po
lity of | ales and ki
uadrant 21
out the ye
otentially v | iller whales
11 in Febru
ar. Cetace | have a
ary and
an spec
to acous | | darbour popeen reconditional r | orpoises a
orded in s
quadrants
the area
ce, injury | and white-si
currounding
in July, wit
are genera | ded dolphii
quadrants.
h other spe
lly distribut | ns have be <u>High num</u> ecies being ted through | een recorded
in recorded in
thout the No | d in the a
prpoises h
n low/mo
orth Sea.
micals, an | area of Bre
nave been
oderate
nur
Marine m
nd effects o | ent; minkerecorded nbers thrammals a | e wha
in Qu
ougho
are po
lity of | ales and ki
uadrant 21
out the ye
otentially v | iller whales
11 in Febru
ar. Cetace | have al
ary and
an speci | | darbour popeen recondigate of the control co | orpoises a
orded in s
quadrants
a the area
ce, injury | and white-si
currounding
in July, wit
are genera
from collision | ded dolphii
quadrants.
h other spe
illy distribut
ns with ves
4 | ns have be High num ecies being ted through sels, oil spi | een recorded
in recorded in hout the Notills and cher | d in the and an in the analysis of analysi | area of Brenave been oderate nur Marine mad effects o | ent; mink
recorded
nbers thr
ammals a
n availabi | e wha
in Qu
ougho
are po
lity of | ales and k
uadrant 21
out the ye
otentially v | iller whales
11 in Febru
ar. Cetace
vulnerable t | have all ary and an specito acous | | larbour popeen recondigated to be desired | orpoises a prded in sequadrants a the area te, injury to te | and white-si
currounding
in July, wit
are genera
from collision
3 | ded dolphir
quadrants.
h other spe
illy distribut
ns with ves
4 | ns have be High nur. ecies being ted through sels, oil spi 4 ue; the are | een recorder mbers of po recorded in hout the No ills and cher a is fished | d in the and an interpolates of the analysis o | area of Bre
nave been
oderate nur
Marine m
nd effects o | ent; minkerecorded onbers through ammals on availabing and den | e wha in Qu ougho are po lity of | ales and kindrant 21 put the yestentially visions. | iller whales 1 in Febru ar. Cetace vulnerable t | have all ary and an specito acous | | arbour popeen recondigated to describe the control of | pammals orpoises a orded in s quadrants of the area ce, injury t d has low herring an | and white-sicurrounding in July, with a regenera from collision 3 commercial d cod domin | ded dolphii
quadrants.
h other spe
illy distribut
ns with ves
4
fishing valuate the spe | ns have be High nur. ecies being ted through sels, oil spi 4 ue; the are ecies lande | een recorder mbers of po recorded in hout the No ills and cher 3 ea is fished d. The relat | d in the and appropriate of the control cont | area of Bre
nave been
oderate nur
Marine m
ad effects o
1
ut the year
g effort is lo | ent; mink
recorded
nbers thr
ammals a
n availabi
3
and den
bw compa | e wha in Qu ougho are po lity of | ales and kindrant 21 put the yestentially viscontially viscontially viscontially and pelago other N. | iller whales 1 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. | have all ary and an specito acous | | Jarbour popeen recondigacent configuration of the population th | orpoises a prded in sequadrants a the area te, injury to te | and white-si
currounding
in July, wit
are genera
from collision
3 | ded dolphir
quadrants.
h other spe
illy distribut
ns with ves
4 | ns have be High nur. ecies being ted through sels, oil spi 4 ue; the are | een recorder mbers of po recorded in hout the No ills and cher a is fished | d in the and an interpolates of the analysis o | area of Bre
nave been
oderate nur
Marine m
nd effects o | ent; minkerecorded onbers through ammals on availabing and den | e wha in Qu ougho are po lity of | ales and kindrant 21 put the yestentially visions. | iller whales 1 in Febru ar. Cetace vulnerable t | have all ary and an specito acous | | Jarbour popeen recondidacent corresent in listurbance isheries rent Field addock, F | pammals orpoises a orpoises a quadrants or the area ce, injury t d has low herring an | and white-si
currounding
in July, with
a are general
from collision
3
commercial
d cod domir | ded dolphii quadrants. h other spe illy distribut ns with ves 4 fishing valu nate the spe 4 | ns have be High num ecies being sels, oil spi 4 ue; the are ecies lande 4 | peen recorded in recorded in hout the Notills and cher 3 a is fished d. The relat 4 | d in the and a second property of the control th | area of Brenave been oderate nur Marine mid effects of the second | ent; minker recorded hobers three ammals an availabin and den by compa | e wha in Qu ougho are po lity of | ales and ki
uadrant 21
but the ye
otentially vi
prey.
and pelac
o other N. | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. | have all ary and an specito acous | | arbour popeen recondigacent of present in listurbance isheries rent Field addock, resulting the Brent | pammals orpoises a orded in s quadrants quadra | and white-sicurrounding in July, with a regenera from collision 3 commercial d cod domin 4 | ded dolphii quadrants. h other spe illy distribut ns with ves 4 fishing valuate the spe 4 moderate | ns have be High num ecies being ted through sels, oil spi 4 ue; the are ecies lande 4 to low ship | peen recorded in recorded in recorded in hout the Not lills and cher 3 a is fished d. The relat 4 | d in the and approving the first throughout | area of Brenave been oderate nur Marine mad effects of the second | ent; minker recorded recorded ammals and available and denow compared to the c | e wha in Quougho are polity of lity of ared to ared to | ales and kindrant 21 put the yeu the yeu the tentially vision and pelago other N. 4 | iller whales 1 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 | have all ary and an specito acous macker 4 North Se | | larbour popeen recondigacent of present in disturbance is the present in disturbance is the present field addock, it is the present in the majorite is the present in the majorite is the present in | anammals orpoises a orded in s quadrants quadr | and white-sicurrounding in July, with a regenera from collision 3 commercial d cod domin 4 an area of sels passing | ded dolphii quadrants. h other spe illy distribut ns with ves 4 fishing valuate the spe 4 moderate the site are | ns have be High num ecies being ted through sels, oil spi 4 ue; the are ecies lande 4 to low shipe tanker ar | peen recorded in recorded in recorded in hout the Not ills and cher 3 a is fished d. The relat 4 upping activiting cargo ves | d in the and an incomposes of the control co | area of Breader are 2 control con | ent; minker recorded recorded ammals and available and denow compared with the compared recorded and reco | e wha in Quougho are polity of lity of ared to ared to | ales and kindrant 21 put the yeu the yeu the tentially vision and pelago other N. 4 | iller whales 1 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 | have a ary and an specto acoust 1 macker | | larbour popeen recondigated to bresent in disturbance is the recondigated to be recondiga | anammals orpoises a orded in s quadrants quadr | and white-sicurrounding in July, with a regenera from collision 3 commercial d cod domin 4 | ded dolphii quadrants. h other spe illy distribut ns with ves 4 fishing valuate the spe 4 moderate the site are | ns have be High num ecies being ted through sels, oil spi 4 ue; the are ecies lande 4 to low shipe tanker ar | peen recorded in recorded in recorded in hout the Not ills and cher 3 a is fished d. The relat 4 upping activiting cargo ves | d in the and an incomposes of the control co | area of Breader are 2 control con | ent; minker recorded recorded ammals and available and denow compared with the compared recorded and reco | e wha in Quougho are polity of lity of ared to ared to | ales and kindrant 21 put the yeu the yeu the tentially vision and pelago other N. 4 | iller whales 1 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 | have all ary and an specito acous macker 4 North Se | | larbour popeen recondigated to be | anammals orpoises a orded in s quadrants quadr | and white-sicurrounding in July, with a regenera from collision 3 commercial d cod domin 4 an area of sels passing | ded dolphii quadrants. h other spe illy distribut ns with ves 4 fishing valuate the spe 4 moderate the site are | ns have be High num ecies being ted through sels, oil spi 4 ue; the are ecies lande 4 to low shipe tanker ar | peen recorded in recorded in recorded in hout the Not ills and cher 3 a is fished d. The relat 4 upping activiting cargo ves | d in the and an incomposes of the control co | area of Breader are 2 control con | ent; minker recorded recorded ammals and available and denow compared with the compared recorded and reco | e wha in Qu ougho are po lity of nersal ared to | ales and kindrant 21 put the yeu the yeu the tentially vision and pelago other N. 4 | iller whales 1 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 | have all ary and an specito acous macker 4 North Se | | Jarbour popeen recondiction rec | ammals orpoises a orded in s quadrants in the area ce, injury in d has low herring an 4 Field is in ity of vess of Brent Br 3 | and white-sicurrounding in July, with a are general decoded domination of the sels passing ravo and 9kr | ded dolphin quadrants. h other spe illy distributions with ves 4 fishing valuate the spe 4 moderate the site are in S of Bren 3 | ns have be High numerical being secies being sels, oil spile 4 ue; the are ecies lande 4 to low shipe tanker art Alpha). If | peen recorded in recorded in recorded in hout the Not ills and cher 3 area is fished d. The relat 4 apping activiting cargo vesses to routine in the recorded in the relation of recorded in | d in the and an incomposes of the control co | area of Brenave been oderate nur Marine mid effects of the second | ent; minker recorded have a available and den by comparated with known. | e wha in Qu ougho are po lity of nersal ared to | ales and kindrant 21 put the yeu tentially viprey. and pelago other N. 4 o other arin the vicin | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in
the nity of the | have all ary and an specito acous macker 4 North Se Brent Fie | | darbour popeen reconsider reconsi | ammals orpoises a orded in s quadrants in the area ce, injury in d has low herring an 4 Field is in ity of vest of Brent Br 3 onservat | and white-sicurrounding in July, with are general from collision 3 commercial d cod domin 4 an area of sels passing ravo and 9kr 3 ion habitat | ded dolphin quadrants. h other specially distributions with ves 4 fishing valuate the special 4 moderate the site are in S of Brein 3 | ns have be High nun ecies being ecies being sels, oil spi 4 ue; the are ecies lande 4 to low ship e tanker ar t Alpha). I | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting cargo vestor outline in 3 | d in the and a series of the control | area of Brenave been oderate nur Marine mid effects of the second | ent; minker recorded anbers thread an availabit and den ow compared with the compare | e wha in Qu ougho are po lity of mersal ared to | ales and ki
judrant 21
but the ye
betentially vi
i prey. and pelago
o other N. 4 to other ar
in the vicin | iller whales 11 in Febru ar. Cetace vulnerable to gic fish e.g. Sea areas. 4 reas in the nity of the | have all ary and an specito acoust 1 macker 4 North Search Field | | larbour popeen recondigatent corresent in disturbance is sheries irent Field addock, he he Brent he majori 19km NE o 3 | ammals orpoises a orded in s quadrants in the area ce, injury in d has low merring an 4 Field is ir ity of vess of Brent Br 3 onservat no known | and white-sicurrounding in July, with are general from collision 3 commercial d cod domin 4 an an area of sels passing ravo and 9kr 3 ion habitati Annex I Ha | ded dolphin quadrants. h other specially distributions with ves 4 fishing valuate the special the site are m S of Bren 3 sebitats near | ns have be High num ecies being ted through sels, oil spi 4 ue; the are ecies lande 4 to low ship e tanker ar t Alpha). I Brent Field | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the and an incomposes of the control co | area of Bre have been whether a poderate nur Marine mand effects of the second | ent; minker recorded inbers through a availabile and den row compared by compared with known. | e wha in Quoupho oupho o | ales and kindrant 21 but the year obtentially vision of the N. 4 to other N. 4 to other arin the vicin | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 15km x 4kr | have all ary and an speci to acous 1 macker 4 North SeBrent Fiel 3 | | Harbour popeen reco
adjacent of present in disturbance is sheries. Brent Field addock, in the Brent Field addock, in the Brent Field are shere are the | ammals orpoises a orded in s quadrants in the area ce, injury in d has low herring an 4 Field is in ity of vess of Brent Br 3 onservation known 4 | and white-sicurrounding in July, with a are generally commercial docod domination and area of sels passing ravo and 9km 3 ion habitatin Annex I Halp 4 | ded dolphin quadrants. h other spelly distributions with ves 4 fishing valuate the spelly and the site are m S of Bren 3 s bitats near 4 | ns have be High nun ecies being ecies being sels, oil spi 4 ue; the are ecies lande 4 to low ship e tanker ar t Alpha). I | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting cargo vestor outline in 3 | d in the and a series of the control | area of Brenave been oderate nur Marine mid effects of the second | ent; minker recorded anbers thread an availabit and den ow compared with the compare | e wha in Quoupho oupho o | ales and ki
judrant 21
but the ye
betentially vi
i prey. and pelago
o other N. 4 to other ar
in the vicin | iller whales 11 in Febru ar. Cetace vulnerable to gic fish e.g. Sea areas. 4 reas in the nity of the | have all ary and an speci to acous 1 macker 4 North Se Brent Fie 3 | | larbour popeen reco
adjacent coresent in
disturbance
Fisheries
Brent Field
addock, h
4
6hipping
The Brent
19km NE o
3
4arine core | ammals orpoises a orded in s quadrants in the area ce, injury in d has low herring an 4 Field is in ity of vess of Brent Br 3 onservation hown 4 onservation | and white-sicurrounding in July, with are general from collision 3 commercial doddomin 4 n an area of sels passing ravo and 9kr 3 ion habitat Annex I Hall 4 ion species | ded dolphin quadrants. h other specially distributions with ves 4 fishing valuate the special the site are m S of Bren 3 s bitats near 4 | ns have be High numerical being ted through sels, oil sping se | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the and an incomposes of the control co | area of Bre have been when the poderate nur Marine mid effects of the poderate in | ent; minker recorded inbers through a variable and den ow compared with the | e wha in Qu ougho ougho or politic process in a contract to the contract of th | ales and kindrant 21 but the ye b | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 3 15km x 4kr | have all ary and an speci to acous 1 macker 4 North Se Brent Fiel 3 n. | | Harbour popeen reco
adjacent of present in disturbance is sheries. Brent Field addock, in 4 | ammals orpoises a orded in s quadrants in the area ce, injury in d has low herring an 4 Field is ir ity of vess of Brent Br 3 onservat no known 4 onservat are prote | and white-sicurrounding in July, with are general from collision 3 commercial docod domin 4 n an area of sels passing ravo and 9kr 3 ion habitat Annex I Ha 4 ion species ected under | ded dolphin quadrants. h other spe illy distributions with ves 4 fishing valuate the spe 4 moderate the site are in S of Bren 3 sbitats near 4 fishing valuate | ns have be High numerical being ted through sels, oil sping se | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the and a second property of the sea. In low/morth lo | area of Bre have been when the poderate nur Marine mad effects of ef | ent; minker recorded inbers through a variable and den ow compared with a variable and tiffed with a variable and tiffed with a variable and the t | e wha in Quougho ougho ougho of the property o | ales and kindrant 21 but the ye b | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 15km x 4kr 4 very high r | have all ary and an speci to acous 1 macker 4 North Se Brent Fiel 3 n. | | Fisheries Brent Field haddock, h Shipping The Brent Shem NE o 3 Marine co Cetaceans February | ammals orpoises a orded in s quadrants of the area ce, injury of the slow herring an 4 Field is ir ity of vess of Brent Br 3 onservat no known 4 onservat are prote and July. | and white-sicurrounding in July, with a are general from collision and a commercial did cod domin and area of sels passing ravo and 9km and a sels passing ravo and 9km | ded dolphin quadrants. h other spe illy distributions with ves 4 fishing valuate the spe 4 moderate the site are in S of Bren 3 sbitats near 4 colphins ha | ns have be High numerical being ted through sels, oil sping se | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the analysis of the second secon | area of Bre have been when the poderate nur Marine mad effects of ef | ent; minker recorded inbers through a variable and den ow compared with a variable and tiffed with a variable and tiffed with a variable and the t | e wha in Quougho ougho ougho of the property o | ales and kindrant 21 but the ye b | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 15km x 4kr 4 very high rely. | have all ary and an speci to acoust | | been reco adjacent of present in disturbance Fisheries Brent Field haddock, h 4 Shipping The Brent Gekm NE of 3 Marine co | ammals orpoises a
orded in s quadrants in the area ce, injury in d has low herring an 4 Field is ir ity of vess of Brent Br 3 onservat no known 4 onservat are prote | and white-sicurrounding in July, with a are generally commercially do domin 4 and area of sels passing ravo and 9km 3 and 4 and 4 and 4 and 4 and 5 an | ded dolphin quadrants. h other spe illy distributions with ves 4 fishing valuate the spe 4 moderate the site are in S of Bren 3 sbitats near 4 fishing valuate | ns have be High numerical being ted through sels, oil sping se | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the and a second property of the sea. In low/morth lo | area of Bre have been when the poderate nur Marine mad effects of ef | ent; minker recorded inbers through a variable and den ow compared with a variable and tiffed with a variable and tiffed with a variable and the t | e wha in Quougho ougho ougho of the property o | ales and kindrant 21 but the ye b | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 15km x 4kr 4 very high r | have all ary and an speci to acous 1 macker 4 North Se Brent Fiel 3 n. | | Fisheries Brent Field haddock, h Shipping The Brent Shem NE o 3 Marine co Cetaceans February | ammals orpoises a orded in s quadrants of the area ce, injury of the slow herring an 4 Field is ir ity of vess of Brent Br 3 onservat no known 4 onservat are prote and July. | and white-sicurrounding in July, with a are general from collision and a commercial did cod domin and area of sels passing ravo and 9km and a sels passing ravo and 9km | ded dolphin quadrants. h other spelly distributions with ves 4 fishing valuate the spelly distributions with ves 4 fishing valuate the spelly distribution with ves 4 moderate the site are in S of Bren 3 state the spelly distribution with the site are in S of Bren 4 Annex II of dolphins had 4 | ns have be High numerical being ted through sels, oil sping se | een recorded in hout the No ills and cher 3 ea is fished d. The relat 4 exping activiting activitin | d in the and a second of the s | area of Bre have been when the poderate nur Marine mad effects of ef | ent; minker recorded anbers through a variable and den ow compared with a variable and tiffied with the vector of the variable and a | e wha in Quougho ougho ougho of the property o | ales and kindrant 21 but the ye b | iller whales 11 in Febru ar. Cetace vulnerable t gic fish e.g. Sea areas. 4 reas in the nity of the 15km x 4kr 4 very high rely. | have all arry and an speci to acoust | ³ Report on Environmental Sensitivities of Brent Field (including Penguins), Shell UK BDE-14-SH-0006/BDE-F-GEN-HE-7753-00004, June 2008 DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA The highest environmental sensitivity is identified as being marine mammals (whales, porpoises) during certain periods of the year. # 3.2 Drill Cuttings & Marine Sediment Baseline Survey 45 In 2007 a pre-decommissioning baseline survey was conducted. 17 grab samples of drill cuttings and marine sediment were collected in cruciform patterns at each of Brent A, B, C, D platforms and 16 grab samples were collected from Brent South. They were analysed for physical and chemical parameters as follows: particle size, THC, n-alkanes, PAH, APE, PCB, metals, organotin and radioactivity. Additionally, day grab samples were collected for macrofaunal analysis. Samples were also collected from reference stations in the wider Brent Field area. Also, within the drill cuttings pile, the following were collected: 1 piston core and 3 box samples for each pile, and 1 ROV core sample on top of GBS cells at Brent B, C and D. They were analysed for particle size, shear strength, water content, oil leach rate, THC, PAH, APE, PCB, metals and radioactivity. #### The results showed: - There is evidence that a wide variety of drilling fluids were used over the lifetime of the platforms. - Total Hydrocarbons (THC) concentrations exceed the Specified Environmental Impact (SEI) criteria (50 μg/g) within the cutting piles, and up to 800 metres from the platforms (the contaminated areas are larger than the cuttings pile footprint). - There are potentially significant impacts upon fauna as a result of the presence of Polyaromatic Hydrocarbons (PAH): Effects Range Low (ERL) and Effects Range Medium (ERM) criteria are often exceeded. - Concentrations of As, Cd, Cr, Cu, Pb, Ni, Zn, exceed OSPAR expected background concentrations, both within and outside the cutting piles. There are elevated metal concentrations around the platforms compared with EAC. - Macrofauna from 9 stations and 2 reference stations: Impacts of contamination are evident, although conclusive statements cannot be made because macrofauna was not collected from every station. In general the results show that the effects of the drill cuttings could be seen to a distance of 450-475m from Brent A and C, at 800m from Brent B, greater than 500m for Brent D and 150 metres from Brent South. #### 3.3 Physical Nature of Drill Cutting Piles A survey was conducted in 2007 to examine the physical nature of the drill cutting piles at Brent Facilities. The survey found that there appeared to be less drill cuttings in the 2007 survey than in a previous 1997 survey. The footprints of the drill cutting piles were found to vary in size, depending on the platform, as illustrated in Table 3.2 below. The maximum thickness of the drill cutting piles depended on the platform, varying between 3-11 metres on the seabed, and between 3-12 metres on top of the cells. DNV Reg. No.: 12NA8UG-7 ⁴ Pre-Decommissioning Environmental Survey Report, Gardline Environmental, BDE-D-GEN-HX-0780-00001, 14 April 2009. ⁵ Pre-decommissioning Environmental Survey Report, Gardline Environmental Report No.7079.2, 11 Jan 2010 Table 3.2: Brent cutting piles 2007 survey data summary | Accet | Se | Seabed | | ll tops | Total area | Total volume | |----------------------------------|-----------|-------------|------------------------|-------------|------------|--------------| | Asset | Area (m²) | Volume (m³) | Area (m ²) | Volume (m³) | (m²) | (m³) | | Brent Alpha | 8,880 | 6,506 | 0 | 0 | 8,880 | 6,506 | | Brent Bravo | 3,414 | 4,635 | 673 | 592 | 4,087 | 5,227 | | Brent Charlie | 3,143 | 5,266 | 2,148 | 6,973 | 5,291 | 12,239 | | Brent Delta | 1,632 | 1,575 | 234 | 798 | 1,866 | 2,373 | | Brent South | 1,620 | 2,016 | 0 | 0 | 1,620 | 2,016 | | Total area of all seabed piles | 18,689 | | | | | | | Total area of cell top piles | 3,055 | | | | | | | Total area of combined piles | 21,744 | | | | | | | Total volume of all seabed piles | 19,998 | | | | | | | Total volume of cell top piles | 8,363 | | | | | | | Total volume of combined piles | 28,361 | | | | | | #### 3.4 Initial Screening Assessment of Cuttings Piles ⁶⁷ Stage 1 (initial screening) of the cuttings pile management regime was conducted for the Brent facilities. Two key OSPAR assessment parameters were examined: - Oil loss from drill cuttings pile to water column over time (OSPAR threshold is 10 tonnes/year) - Persistence: this is assessed on the basis of the seabed area where the oil concentration remains above 50 mg/kg (compared against a threshold of 500 km²yrs). If either of the thresholds is exceeded, Stage 2 examination should be initiated (this involves BAT/BEP assessment). Existing information provides reasonable confidence that each of the Brent cutting piles falls below both the OSPAR thresholds. The Brent Decommissioning Project is carrying out modelling, to assess and confirm that the criteria are met, and to assess the long-term environmental impact of leaving the drill cuttings in place. This information will need to be clearly presented and demonstrated within the EIA. #### 3.5 Contents of GBS Cells 8 No sample of cell sediment has yet been collected from a Brent GBS. To obtain an initial estimate of the types and amounts of contaminants contained within the GBS, a desktop study was conducted which
examined data from: - some limited sampling data of Brent GBS contents (1 sampling event in 2007 at Brent Delta that involved sampling the mobile phase of water and oily fluid) and sampling data from Brent D GBS produced oil and water; and - data from other decommissioning projects (such as Ekofisk and Brent Spar). DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Revision No.: 5 Date: 24 May 2011 Page 22 ⁶ Initial Screening Assessment of UKCS Cutting Piles; Aquatera Ltd, Rev1.1, Feb 2007. ⁷ ERT: Data review for an Industry-Wide Response to Cutting Pile Management, Sept 2008 ⁸ Brent GBS Decommissioning Contaminants Review, Royal Haskoning, Ref 9S2249/R/303642/Newc, 28 May 2008 As might be expected owing to the historical and varied use of the GBS cells (the cells may have contained a range of contaminants, as well as hydrocarbons), the cell contents are predicted to be contaminated. Shell estimates that the cell sediments are likely to comprise a mixture of sand, water and oil, in roughly equal proportions. Table 3.3 below provides estimates for the volume of sediment contained within the cells of BB, BC, and BD. These are Shell's "working estimates" and are based on the assumption that the average depth of sediment in cells that were used for oil storage is 4m. Table 3.3: Estimated values for volume of sediment in GBS cells | Platform | Volume (m ³) | |---------------|--------------------------| | Brent Bravo | 17,280 | | Brent Charlie | 6,034 | | Brent Delta | 17,280 | | Total | 40,594 | #### 3.6 Environmental Baseline for Onshore Locations Currently the location(s) for onshore dismantling are not known and as such baseline data cannot be provided. Shell UK will only use onshore facilities that are licensed to receive decommissioning wastes, although the EIA will still need to demonstrate that impacts are acceptable. Aspects that will be of relevance when selecting/evaluating possible onshore locations include: - Design/layout of facilities; - Distance to neighbours and third party activities; - Distance to nature conservation areas: - Adjacent infrastructure; - Pollution/spill contingency measures; - Containment areas/systems; - Waste water treatment facilities; - Logistics for managing and transporting waste; - Noise: - Environmental monitoring results. For the purposes of this scoping document, DNV has considered generic issues of concern, and those issues identified in Section 6 as potentially significant will typically need to be addressed in the EIA. DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 4 DECOMMISSIONING OPTIONS The scoping workshop examined various decommissioning options for the Brent Field facilities as detailed in Table 4.1 below. Both planned and unplanned activities (such as accidental events/outcomes) were taken into consideration for the various options as well as major legacy issues. Main concerns and issues raised from stakeholders were also identified (based on information provided by Shell UK) and taken into consideration. Subsea Infrastructure (such as manifolds, SSIVs) was not covered in detail in the scoping workshop because it was concluded that the potential for impact was relatively minor in comparison to the other categories. It is noted that Shell do not intend to use explosives during planned underwater cutting in any of the options. Explosives will only be considered as a last resort in exceptional unforeseen circumstances. In such an event, consultation would be held with DECC and JNCC prior to operations. If explosives were to be used Shell would strictly adhere to the JNCC guidelines (www.jncc.gov.uk/default.aspx?page=4900) for minimising acoustic disturbance to marine mammals. DNV Reg. No.: 12NA8UG-7 #### **MANAGING RISK** #### **Table 4.1 Decommissioning Options Examined** | | CATEGORY | SCOPE | OPTIONS | LEGACY ISSUES | |---|-----------------------|-----------------------------|--|--| | 1 | Jacket | 1 x steel jacket (BA); | 1. Derogation to remain in place after removal of topsides, with legs cut down to top of piles at about -84 m LAT. | Long -term effects of derogated structure if left in | | | | | Method: Cut and lift in several pieces using an HLV, probably with cold-cutting methods such as | Isitu | | | | | diamond wire, abrasive water-jetting. | Situ | | | | | 2. Derogation to remain in place after removal of topsides with legs cut down to give 55m | | | | | | clearance for shipping. | | | | | | Method: Cut and lift in several pieces using an HLV, probably with cold-cutting methods such as | | | | | | diamond wire, abrasive water-jetting; | | | | | | 3. Full removal in pieces by HLV with onshore dismantling and recycling; the legs and piles would | | | | | | be severed approximately 3m below the level of seabed. | | | 2 | Drill Cuttings | All external cuttings piles | 1. Leave in situ for natural degradation, as per OSPAR | Long-term effects of in situ | | | | (BA,BB,BC,BD), including | 2. Remove and reinject from one of the Brent platforms. | degradation. | | | | cuttings piles on top of | 3. Remove and treat onshore | | | | | the GBS cells | | | | 3 | Cell Sediments | Oily sediments present in | 1. Leave in situ for natural degradation | Eventual exposure of untreated | | | | the cells of all 3 GBS | 2. Cell sediments removed and re-injected offshore. | oily sediments when cells/GBS | | | | (BB,BC,BD). | 3. Cap in situ in the cells. | break down if left in situ. | | | | | 4. Cell sediments removed and disposed of onshore | | | 4 | Topsides | All 4 topsides. | 1. Complete removal by modular dismantling using an HLV | None | | | | (BA,BB,BC,BD) | 2. Piece small dismantling offshore | | | | | | 3. Removal in one piece using a single lift vessel. | | | 5 | GBS | 3 x GBS (BB, BC, BD) | 1. Derogation to remain in situ after removal of topsides. Legs intact and upright. | Long-term effects of derogated | | | | Excluding cell sediments | 2. Partial derogation, with legs removed to about 70m depth. | structure left in situ, with and | | | | and drill cuttings (these | Method: Cut and lift in several pieces using an HLV, probably with cold-cutting methods such as | without legs up. | | | | are considered | diamond wire, abrasive water-jetting. | | | | | separately, see above). | 3. Full removal of GBS by refloating, then dismantling inshore and onshore. | | | | | | Note: cell sediments in GBS will be present when refloated. | | | 6 | Pipelines, | All in-field pipelines and | 1. Leave in situ. | Long term effects of leaving | | | Umbilicals | umbilicals. Assume all | (with some intervention depending on pipe) | pipelines in situ, whether buried | | | | lines and umbilicals are | 2. Removal – cut & lift for pipelines and reverse lay for umbilicals & pipelines < 16 inches. | or exposed | | | | flushed. | 3.Burial: Trench and back-fill or fluidize seabed, pipeline settle and sink | | DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 5 DESCRIPTION OF SCOPING METHODOLOGY #### 5.1 Scoping Workshop The internal DNV scoping workshop was conducted in Stavanger, Norway on the 18- 19th May, and was attended by a multidisciplinary experienced team of 5 DNV personnel. DNV Norway provided the technical expertise in offshore decommissioning and the workshop was chaired by DNV UK. Prior to the workshop, environmental baseline documents, background information on the facilities, and studies/ surveys conducted on drill cuttings and GBS cell sediments were reviewed and summarised to provide the context for the workshop. DNV consider that the background information and data made available by Shell UK (both Shell documents and external studies) `was sufficient to undertake the Scoping Workshop effectively. #### 5.2 Scoping Methodology The methodology for the Scoping Workshop was based on the *European Commission (EC)* Guidance on EIA Scoping June 2001, as it provides a structured and recognised approach to identifying significant impacts from the project. http://ec.europa.eu/environment/eia/eia-guidelines/g-scoping-full-text.pdf Using the EC guidance and checklists led to a structured discussion for each category (see Table 4.1 for categories), evaluating the decommissioning options. The key Scoping Checklist in the EC guidance is in two parts (see Appendix 2): - 1. The first part of the Scoping Checklist provides a list of possible project characteristics which could give rise to environmental effects. The user is prompted to first consider whether the project is expected to involve any of the activities or features listed in the checklist and to answer with: - yes if the activity is likely to occur; - no if the activity is not expected to occur; - ? if it is uncertain whether the activity will occur or not. If the answer to any question is "Yes", the user then considers which characteristics of the surrounding environment could be affected by that activity and the results are entered in the checklist. 2. Secondly, consideration is given as to whether an impact is likely to be significant. DNV used the EC Guidance Checklist of Criteria for Evaluating the Significance of Environmental Effects as a workshop prompt, but experience and expertise in the area were the key drivers in evaluating the significance of environmental effects. #### **5.3** Workshop Findings The discussions and DNV's evaluation of the potential significant impacts related to each category are captured in detail in the checklists provided within Appendix 2. It is from these detailed checklists that a summary of the potentially significant impacts was created for each category and these are provided as a set of six tables in Section 6. DNV Reg. No.: 12NA8UG-7 Shell
(UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA For increased quality assurance, DNV compared the findings determined in the scoping workshop against findings from similar Norwegian EIA studies of offshore decommissioning projects, and made minor additions to the tables in Section 6. Also, DNV ensured that the key concerns of Shell UK stakeholders were captured. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Page 27 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 6 SUMMARY OF OUTPUT FROM SCOPING WORKSHOP The output from the Scoping Workshop is a scoping checklist on each facility, as provided in Appendix 2. These scoping checklists were then summarised in the following six tables for each of the six categories. The tables cover all the decommissioning options for each category. It is important to note that these items have been identified as having a potential for significant impact on the basis of being considered without mitigation. Where no entry is made in the tables, this means either there will be no impact, or the impact is not considered significant. Also, these potentially significant impacts have not been ranked; those key issues with the greatest potential for impact are highlighted in Section 7. DNV Reg. No.: 12NA8UG-7 # 6.1 Category 1 – Steel Jacket | Steel Jacket | Option 1 | Option 2 | Option 3 | |--|---|---|--| | Brent A | Derogation - legs cut to 84 m below sea surface | Derogation – legs cut to 55 m clearance for shipping | Full removal in pieces with HLV, onshore dismantling / recycling | | | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Will Project involve: | | | | | Any Physical Changes in locality | Offshore flotel required for temporary accommodation. Associated impacts will need to be addressed (e.g. anchor pits). | Offshore flotel required for temporary accommodation.
Associated impacts will need to be addressed (e.g. anchor pits). | Offshore flotel required for temporary accommodation. Associated impacts will need to be addressed (e.g. anchor pits). | | | Impact on sea bed of anchor pits for crane vessels. | o Impact on sea bed of anchor pits for crane vessels. | Impact on sea bed of anchor pits for crane vessels. | | | | | Disturbance to sea bed to remove drill cuttings to access
jacket footings. Associated impacts will need to be addressed
(e.g. marine). | | | | | o If a structure needs to be constructed inshore to receive jacket or jacket sections, associated impacts will need to be addressed (marine, noise, visual). | | Resource Use | Potentially increased onshore and offshore traffic during decommissioning, and production of steel grillage. | Potentially increased onshore and offshore traffic during
decommissioning and production of steel grillage. | Potentially increased onshore and offshore traffic during decommissioning and production of steel grillage. | | Use, transport,
handling, production of
Hazardous Substances | | | Disturbance to sea bed to remove drill cuttings to access jacket footings. Associated impacts will need to be addressed (e.g. marine). | | Production of Solid wastes | Large quantities of steel (potential positive impact of
recycling). | Large quantities of steel (potential positive impact of
recycling). | Large quantities of steel (potential positive impact of
recycling). | | | Disposal of sacrificial anodes. | Disposal of sacrificial anodes. | Disposal of sacrificial anodes. | | Air Emissions | Odour from marine growth on jacket. | Odour from marine growth on jacket. | Odour from marine growth on jacket. | | | NO_x, SO₂, CO₂ emissions to air from vessels, helicopters,
HLV, production of grillage etc. | NO_x, SO₂, CO₂ emissions to air from vessels, helicopters,
HLV, production of grillage etc. | NO_x, SO₂, CO₂ emissions to air from vessels, helicopters,
HLV, production of grillage etc. | | Noise/Light emissions | Potentially increased onshore and offshore traffic during
decommissioning (including underwater noise). | Potentially increased onshore and offshore traffic during
decommissioning (including underwater noise). | Potentially increased onshore and offshore traffic during decommissioning (including underwater noise). | | | Noise and vibration from lifting and cutting steel onshore and
noise from underwater cutting offshore. | Noise and vibration from lifting and cutting steel onshore and
noise from underwater cutting offshore. | Noise and vibration from lifting and cutting steel onshore and
noise from underwater cutting offshore. | | | | | If a structure needs to be constructed inshore to receive jacket
or jacket sections, noise impacts will need to be addressed. | | Water & Marine
Environment | Offshore flotel required for temporary accommodation. Associated impacts will need to be addressed (e.g. anchor pits). | Offshore flotel required for temporary accommodation.
Associated impacts will need to be addressed (e.g. anchor pits). | Offshore flotel required for temporary accommodation. Associated impacts will need to be addressed (e.g. anchor pits). | | | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs (low probability). | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs (low probability). | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs (low probability). | DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 #### MANAGING RISK | Steel Jacket
Brent A | Option 1 Derogation - legs cut to 84 m below sea surface | Option 2 Derogation – legs cut to 55 m clearance for shipping | Option 3 Full removal in pieces with HLV, onshore dismantling / recycling | |--------------------------------------|--|--|---| | | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | | o Impact on sea bed of anchor pits for crane vessels. | o Impact on sea bed of anchor pits for crane vessels. | Impact on sea bed of anchor pits for crane vessels. | | | Water containing chemicals/biocides may be present in jacket
legs. | Water containing chemicals/biocides may be present in jacket
legs. | Water containing chemicals/biocides may be present in jacket legs. | | | | | Disturbance to sea bed to remove drill cuttings to access jacket footings. Associated impacts will need to be addressed (e.g. marine). | | | | | If a structure needs to be constructed inshore to receive the jacket, marine impacts will need to be addressed. | | Environmental Risk
from Accidents | EIA assessment should examine major accidents such as: Drop piece during decommissioning and fracture live hydrocarbon (HC) pipeline Refuelling spillage Ship collision | EIA assessment should examine major accidents such as: Drop piece during decommissioning and fracture live hydrocarbon (HC) pipe Refuelling spillage Ship collision | EIA assessment should examine major accidents such as: - Drop piece during decommissioning and fracture live hydrocarbon (HC) pipe - Refuelling spillage - Ship collision | | Social Impact | o Potential positive impact of employment. | Potential positive impact of employment. | Potential positive impact of employment. | | Other | The legacy issue of leaving the jacket and footings in-situ
needs to be addressed in the EIA, particularly with respect to
the impact on fishermen. | The legacy issue of leaving the jacket and footings in-situ
needs to be addressed in the EIA, particularly with respect to
the impact on fishermen. | If a receiving facility needs to be constructed inshore to receive jackets, visual impacts will need to be addressed. | DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 # **6.2** Category 2 – Drill Cuttings | DRILL CUTTINGS – | Option 1 |
Option 2 | Option 3 | |--|---|--|---| | BRENT A, B, C, D | Leave in-situ | Remove & Re-inject | Remove & Treat onshore | | , , , | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Will Project involve:: Any Physical Changes in locality | | Dredging/suction of drill cuttings: associated impacts (e.g. marine and noise) will need addressing. | Dredging/suction of drill cuttings: associated impacts
(e.g. marine, solid waste, noise) will need addressing. | | Resource Use | | Potentially increased onshore and offshore traffic (vessels, helicopters, HLV etc) and process activities. | Potentially increased onshore and offshore traffic
(vessels, helicopters, HLV etc) and process activities. | | Use, transport, handling,
production of Hazardous
Substances | | Handling of contaminated drill cuttings | Handling of contaminated drill cuttings | | Production of Solid wastes | | | Large quantities of solid wastes generated when drill
cuttings are removed. Note that drill cuttings will likely
contain debris (e.g. scaffold) | | Air Emissions | | Energy and emissions to air from vessels, etc. | NO_x, SO₂, CO₂, dust emissions to air from vessels,
helicopters, HLV processes, onshore thermal processing
etc. | | | | | Onshore odour of drill cuttings due to H ₂ S and oil. | | Noise | | Dredging/suction of drill cuttings can produce underwater noise and disturbance | Dredging/suction of drill cuttings can produce noise and
disturbance | | | | Noise from potentially increased offshore traffic (vessels,
helicopters, etc). | Noise from potentially increased onshore and offshore
traffic (vessels, helicopters, HLV etc) and process
activities (e.g. low thermal desorption). | | Water & Marine Environment | Legacy of leaving drill cuttings on sea bed. | Dredging/suction of drill cuttings will result in leaching into water column. | Dredging/suction of drill cuttings will result in leaching
into water column. | | | | o Large quantities of liquid wastes will be generated when drill cuttings are removed. | Large quantities of liquid wastes will be generated when
drill cuttings are removed. | | | | | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs. | | Env. Risk from Accidents | | Leakage of drill cuttings from re-injected wells | Spillages to sea during the transportation | | | | Spillages to sea from platform | o Spillages onshore | | Social Impact | Impact upon fishermen due to continued presence of drill cuttings. | | | | | | Positive impact of temporary employment. | Positive impact of temporary employment. | | Other Factors | Cumulative impacts of Brent A, B, C, D. Legacy of leaving drill cuttings on sea bed. | o Cumulative impacts of Brent A,B,C,D. | Cumulative impacts of Brent A,B,C,D. | DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 ## **6.3** Category 3: Cell Contents | GBS CELL | Option 1 | Option 2 | Option 3 | Option 4 | |--|---|---|--|---| | | Leave in-situ | Remove and re-inject | Cap in-situ in cells | Remove and transport to shore | | SEDIMENT | Activities with potential for impact if not | | BRENT B, C & D | controlled | controlled | controlled | controlled | | Will Project involve: Any Physical Changes in locality | Removal of drill cuttings on top of cells to permit access for sampling of contents. Associated impacts will need to be addressed (e.g. marine impacts). Significant construction and modifications may be necessary to access GBS. | Removal of drill cuttings on top of cells to permit access. Associated impacts will need to be addressed (e.g. marine impacts). Significant construction and modifications may be necessary to access GBS. | Removal of drill cuttings on top of cells to permit access. Associated impacts will need to be addressed (e.g. marine impacts). Significant construction and modifications may be necessary to access GBS. | Removal of drill cuttings on top of cells to permit access. Associated impacts will need to be addressed (e.g. marine impacts). Significant construction and modifications may be necessary to access GBS. | | Resource Use | | Potentially increased traffic onshore,
offshore and air traffic. | Potentially increased traffic onshore,
offshore and air traffic. | Potentially increased traffic onshore, offshore and air traffic, plus use of low thermal desorption unit onshore. | | Use, transport, handling, production of Hazardous Substances | | Chemicals may be used to help fluidise the sediment during removal. Removed cell sediment sludge may require handling/filtering before reinjection. | Use of various capping materials (e.g. bentonite) | Potentially chemicals may be used to help fluidise the sediment. Removed sediment sludge will require handling/filtering and then transport to shore. | | Production of Solid wastes | | V | | The operation will generate significant
cell sediment sludge that would need to
be shipped to shore for disposal. | | Air Emissions | | NO_x, SO₂, CO₂ emissions to air from
vessels, helicopters etc. | NO_x, SO₂, CO₂ emissions to air from
vessels, helicopters etc. | NO_x, SO₂, CO₂ emissions to air from vessels, helicopters etc. Potential odour onshore from cell sediment. | | Noise/Light emissions | | Increased sea traffic offshore, with
associated underwater noise. | Increased sea traffic offshore, with
associated underwater noise. | Increased traffic impacts (onshore and
offshore), including potential offshore
underwater noise. | | Water & Marine Environment | Legacy issues relating to leaving the sediment in-situ; associated impacts will need to be addressed including marine impacts after disintegration of GBS. | Offshore flotel required for temporary accommodation; associated impacts will need to be addressed (e.g. anchor pits). | Legacy issues relating to leaving the sediment in the GBS; marine impacts after disintegration of GBS will need to be addressed. Offshore flotel required for temporary accommodation; associated impacts will need to be addressed (e.g. anchor pits). | Offshore flotel required for temporary
accommodation; associated impacts will
need to be addressed (e.g. anchor pits). | | | | Removal of drill cuttings on top of cells to permit access; associated marine impacts will need to be addressed. Removed sediment sludge will require filtering before re-injection, creating | Removal of drill cuttings on top of cells to
permit access; associated marine impacts
will need to be addressed. | Removal of drill cuttings on top of cells to permit access; associated marine impacts will need to be addressed. Removed sediment sludge will require filtering before transport to shore, | ### MANAGING RISK | GBS CELL
SEDIMENT | Option 1
Leave in-situ | Option 2
Remove and re-inject | Option 3
Cap in-situ in cells | Option 4 Remove and transport to shore | |--------------------------------------|--|---|---
---| | BRENT B, C & D | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | | | wastewater (that may also contain chemicals added to facilitate removal). O Contaminated Wastewater from within cells. | | creating wastewater. (that may also contain chemicals added to facilitate removal). O Contaminated Wastewater from within cells. O Introduction of alien species (from ballast water) to enclosed waters such as lochs (low probability). | | Environmental Risk from
Accidents | | Potential leakage from injection well. | | o Spillages during transportation | | Social Impact | | Potential positive impact of employment offshore. | Potential positive impact of employment.
offshore | o Potential positive impact of employment. onshore | | Other Factors | Legacy issues relating to leaving the
sediment in-situ; associated impacts will
need to be addressed including eventual
exposure when structure collapses,
fisheries impact, ethical and reputation
aspects. | Legacy issues relating to leaving the
sediment after re-injection; associated
impacts will need to be addressed
including leakages, fisheries impact,
ethical and reputation aspects. | Legacy issues relating to leaving the sediment in-situ; associated impacts will need to be addressed including eventual exposure when structure collapses ethical and reputation aspects. | | ## **6.4** Category 4- Topsides | TOPSIDES - | Option 1 | Option 2 | Option 3 | |--|--|--|--| | Brent A, B, C | Complete Removal (modular dismantling using HLV) | Complete Removal (Piece-small dismantling offshore) | Complete Removal in one piece using single lift vessel | | & D | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Will Project involve: Any Physical Changes in | If onshore receiving facility requires expansion owing to
volume of topsides, then associated impacts will need to be
addressed (e.g. landtake) | If onshore receiving facility requires expansion owing to
volume of topsides, then associated impacts will need to be
addressed (e.g. landtake) | If onshore receiving facility requires expansion owing to volume of topsides, then associated impacts will need to be addressed (e.g. landtake) | | locality | Potential temporary accommodation (flotel) for
decommissioning workers - associated impacts will need to be
addressed (e.g. anchor pits) | Potential temporary accommodation (flotel) for
decommissioning workers - associated impacts will need to be
addressed (e.g. anchor pits) | Potential temporary accommodation (flotel) for decommissioning workers - associated impacts will need to be addressed (e.g. anchor pits) If single lift method requires construction of inshore receiving structure for topsides, associated impacts will need to be addressed. | | Resource Use | Energy consumption from miscellaneous sources, particularly HLV, and also from production of grillage. Potentially increased traffic, onshore and offshore, (ship, truck, | Energy consumption from miscellaneous sources, particularly HLV, and also from production of grillage. Potentially increased traffic, onshore and offshore, (ship, truck, | Energy consumption from miscellaneous sources, particularly SLV. Potentially increased traffic, onshore and offshore, (ship, truck, | | Use, transport, handling, | helicopter) during decommissioning. O Quantities of hazardous wastes are present in topsides. | helicopter) during decommissioning. O Quantities of hazardous wastes are present in topsides. | helicopter) during decommissioning. O Quantities of hazardous wastes are present in topsides. | | production of Hazardous
Substances | Risk due to spillage of hazardous / toxic materials needs to be
managed. | Risk due to spillage of hazardous / toxic materials needs to be
managed. | Risk due to spillage of hazardous / toxic materials needs to be
managed. | | Production of Solid wastes | Large quantities of waste steel, hazardous wastes and general
wastes from topsides. | Large quantities of waste steel, hazardous wastes and general
wastes from topsides. | Large quantities of waste steel, hazardous wastes and general
wastes from topsides. | | Air Emissions | Emissions of NOx, SOx, dust, CO2 to air from vessels,
helicopter, HLV and from production of grillage. Dust
emissions from deconstruction of topsides onshore. | Emissions of NOx, SOx, dust, CO2 to air from vessels,
helicopter and from production of grillage. Dust emissions
from deconstruction of topsides onshore. | Emissions of NOx, SOx, dust, CO2 to air from vessels,
helicopter, SLV etc. Dust emissions from deconstruction of
topsides onshore. | | Noise/Light emissions | o If onshore receiving facility requires expansion owing to large volume of topsides, noise impacts will need to be addressed. | If onshore receiving facility requires expansion owing to large
volume of topsides, noise impacts will need to be addressed. | If onshore receiving facility requires expansion owing to large
volume of topsides, noise impacts will need to be addressed. | | | Noise from onshore deconstruction activities (lifting, cutting etc). | Noise from onshore deconstruction activities (lifting, cutting
etc). | Noise from onshore deconstruction activities (lifting, cutting etc). | | | Potentially increased traffic, onshore and offshore, (ship, truck,
helicopter etc) during decommissioning - associated noise
impacts will need to be examined. | Potentially increased traffic, onshore and offshore, (ship, truck,
helicopter etc) during decommissioning - associated noise
impacts will need to be examined. | Potentially increased traffic, onshore and offshore, (ship, truck,
helicopter etc) during decommissioning - associated noise
impacts will need to be examined. | | | | | If single lift method requires construction of inshore receiving
structure for topsides, associated noise impacts will need to be
addressed. | | Water & Marine | Quantities of wastewater from flushing topside pipes. | Quantities of wastewater from flushing topside pipes. | Quantities of wastewater from flushing topside pipes. | | Environment | Owing to potential temporary accommodation (flotel if
required) for decommissioning workers. Associated impacts
will need to be addressed (e.g. anchor pits) | Owing to potential temporary accommodation (flotel if
required) for decommissioning workers. Associated impacts
will need to be addressed (e.g. anchor pits) | Owing to potential temporary accommodation (flotel if
required) for decommissioning workers. Associated impacts
will need to be addressed (e.g. anchor pits) | | | o Introduction of alien species from (e.g. ships and barges, ballast | o Introduction of alien species from (e.g. ships and barges, ballast | o Introduction of alien species from (e.g. ships and barges, ballast | ### MANAGING RISK | TOPSIDES -
Brent A, B, C | Option 1 Complete Removal (modular dismantling using HLV) | Option 2 Complete Removal (Piece–small dismantling offshore) | Option 3 Complete Removal in one piece using single lift vessel | |--------------------------------------|---|--|--| | & D | Activities with potential for impact if not
controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | | water) – low probability. | water) – low probability. | water) – low probability. | | | Material management: Onshore yard requires solid
impermeable surface on deconstruction area, with drainage
containment system. | Material management: Onshore yard requires solid
impermeable surface on deconstruction area, with drainage
containment system. | Material management: Onshore yard requires solid
impermeable surface on deconstruction area, with drainage
containment system. | | | | | If single lift method requires construction of inshore receiving
structure for topsides, the associated marine impacts of the new
structure will need to be addressed. | | Environmental Risk
from Accidents | EIA assessment should consider major potential accidents, e.g. | EIA assessment should consider major potential accidents, e.g. | EIA assessment should consider major potential accidents, e.g. | | Tom Accidents | Small module of topside drops and breaks hydrocarbon pipeline Drop module during transport and breaks hydrocarbon pipe Ship Vessel collision and spill Spillage during refuelling of HLV | Small module topside drops and breaks hydrocarbon pipe Drop module during transport and breaks hydrocarbon pipe Ship Vessel collision and spill Spillage during refuelling of HLV | Single lift topples and breaks hydrocarbon pipe Risks during transfer to shore Ship Vessel collision and spill Spillage during refuelling of SLV. Spillages onshore while dismantling. | | Social Impact | If onshore receiving facility requires expansion owing to the large volume of topsides, then related social impacts will need to be addressed. | If onshore receiving facility requires expansion owing to the
large volume of topsides, then related social impacts will need
to be addressed. | If onshore receiving facility requires expansion owing to the large volume of topsides, then related social impacts will need to be addressed. | | | o Potential positive impact of employment. | o Potential positive impact of employment. | o Potential positive impact of employment. | | | | | If single lift method requires construction of inshore receiving
structure for topsides, associated visual impact will need to be
addressed. | ## 6.5 Category 5: GBS | GBS FOR BRENT | Option 1 | Option 2 | Option 3 | |---|---|--|--| | B, C & D | Derogation to leave in place after removal of topsides. Legs intact and upright. | Partial derogation with legs removed to 70 m depth. | Full removal by refloating, then dismantling inshore. | | | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Will Project involve: | | Temporary accommodation may be required - associated impacts to be addressed (e.g. anchor pits). | Temporary accommodation may be required - associated impacts to be addressed (e.g. anchor pits). | | Any Physical Changes in locality | | | A GBS receiving structure may need to be constructed
nearshore, and associated impacts will need to be
addressed. | | | | | o If onshore receiving facility requires expansion owing to huge volume of GBS. | | | | | Potential impact upon sea floor owing to high pressure
water jets to clear drill cuttings and aid refloat by
underbase injection. | | Resource Use | | Energy consumption from increased onshore and offshore
traffic (ship, truck, helicopter, HLV) activities during
decommissioning. | Energy consumption from increased onshore and offshore traffic (ship, truck, helicopter) activities during decommissioning. | | Use, transport, handling, production of Hazardous | | | Displacement of drill cuttings by water-jetting prior to
removal of GBS. | | Substances | | | o 'Star cell' drill cuttings | | Production of Solid wastes | | o GBS solid waste (and some marine growth) from the legs. | Large quantities of GBS solid waste (and some marine growth). | | | | | O Quantities of cell sediment waste (and sand ballast). | | Air Emissions | | Emissions of NO_x, SO₂, CO₂ to air from increased
activities; vessels, helicopters, HLV etc. | Emissions of NO_x, SO₂, CO₂ to air from increased
activities; vessels, helicopters etc. | | | | O Dust emissions from deconstruction of GBS legs onshore. | O Dust emissions from deconstruction of GBS onshore. | | | | Odour from marine growth on removed GBS concrete legs. | Odour from marine growth on removed GBS concrete. | | Noise/Light emissions | | | A new GBS receiving structure may need to be constructed
inshore; associated noise/visual impacts will need to be
addressed. | | | | | o If onshore receiving facility requires expansion owing to huge volume of GBS, the associated noise impacts will need to be addressed. | | | | Noise from lifting and crushing of concrete legs inshore and
onshore | Noise from lifting and crushing of concrete inshore and
onshore | | | | Potentially increased onshore and offshore traffic (ship,
truck, helicopter) activities during decommissioning with
associated noise impacts (including underwater). | Potentially increased onshore and offshore traffic (ship,
truck, helicopter) activities during decommissioning with
associated noise impacts (including underwater). | ### MANAGING RISK | GBS FOR BRENT
B, C & D | Option 1 Derogation to leave in place after removal of topsides. Legs intact and upright. | Option 2 Partial derogation with legs removed to 70 m depth. | Option 3 Full removal by refloating, then dismantling inshore. | |--------------------------------------|---|--|---| | | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Water & Marine Environment | Legacy issues will need to be addressed with respect to future collapse of GBS in hundreds of years, and exposure of cell contents to marine environment. | Legacy issues will need to be addressed with respect to future collapse of GBS in hundreds of years, and exposure of cell contents to marine environment. | A GBS receiving structure may need to be constructed inshore; associated marine impacts will need to be addressed. Potential impact upon marine environment owing to high pressure water jets to clear drill cuttings (both on GBS surface and at seabed/GBS interface). | | | | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs (low probability). | Introduction of alien species (e.g. from ballast water) to
enclosed waters such as lochs (low probability). | | | | Temporary accommodation may be required offshore -
associated impacts to be addressed (e.g. anchor pits). | Temporary accommodation may be required offshore - associated impacts to be addressed (e.g. anchor pits). | | | | Potential impacts on fish and marine mammals from
offshore concrete legs deconstruction activities. | | | Environmental Risk from
Accidents | | EIA assessment should examine major potential accidents
such as spillage during refuelling of vessels, and dropping
of sections. | EIA assessment should examine major potential accidents such as: Spillage during refuelling of vessels. Break-up, collapse and sinking during refloating offshore or at nearshore dismantling site. | | Social Impact | Potential impact upon fishermen and shipping of leaving GBS in place. | Potential impact upon fishermen and shipping of leaving GBS in place. | If onshore receiving facility requires expansion owing to huge volume of GBS, or a new GBS receiving structure needs to be constructed inshore, the associated social impacts will need to be addressed. Potential positive impact of employment. | | Other Factors | Legacy issues will need to be addressed with respect to collapse of GBS in the distant future. | Legacy issues will need to be addressed with respect to collapse of GBS in the distant future. | If a GBS receiving structure needs to be constructed inshore,
the visual impact will need to be addressed. | ## **6.6** Category 6: Pipelines and Umbilicals | | Option 1 | Option 2 | Option 3 | |---|--|--|---| | PIPELINES and | Leave in-situ (with some remedial activity) | Removal – cut & lift or reverse lay | Burial: Trench & Drag or
Fluidise & Sink | | UMBILICALS | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | Will Project involve: Any Physical Changes in locality | Offshore flotel required for temporary accommodation (associated issues include anchor pits). | Offshore flotel required for temporary accommodation (associated issues include anchor pits). | Offshore flotel required for temporary accommodation
(associated issues include anchor pits). | | | Disturbance to seabed during remedial burial & rock-dump | If onshore facility requires expansion to store the large
quantities of pipelines. | Disturbance to seabed during dredging, rock-dump and
fluidise. | | Resource Use | | o Increased sea & air traffic during decommissioning. | o Increased sea & air traffic during decommissioning. | | | Use of materials for rock dumping where necessary | Potentially increased traffic onshore to transport solid
steel wastes for recycling. | | | Use, transport, handling, | Chemicals used in flushing pipelines. | Chemicals used in flushing pipelines. | Chemicals used in flushing pipelines. | | production of Hazardous
Substances | Contaminated waste (Hg, LSA, Scale) in pipes and the flush
wastewater. | Contaminated waste (Hg, LSA, Scale) in pipes and the
flush wastewater. | Contaminated waste (Hg, LSA, Scale) in pipes and the
flush wastewater. | | | | Potential asbestos 'wrap' between concrete and steel on
some old pipelines prior to ~1980 (may also be integral
with the concrete). Also, coal tar enamel on some old
pipelines - hot cutting onshore can emit hazardous
substances. | | | Production of Solid wastes | | Large quantities of solid waste (concrete, rubber, steel)
from waste pipes. Note the positive impact of recycling
steel pipes. | | | | | Sacrificial anode waste (recycling metals). | | | | | Contaminated wastes (Hg, LSA, Scale) in pipes cleaned
onshore. | | | Air Emissions | | SO₂, NO_x, CO₂, dust emissions to air from increased
vessels, helicopters, HLV etc. | SO₂, NO_x, CO₂, dust emissions to air from increased
vessels, helicopters, HLV etc. | | | | O Dust onshore from cutting pipes. | | | Noise/Light emissions | | Odour onshore from marine growth on pipelines Noise due to increased sea & air traffic during decommissioning (including underwater noise). | Noise due to increased sea & air traffic during decommissioning (including underwater noise). | | | | If onshore facility requires expansion to store large
quantities of pipelines, then there will be potential noise
impacts during pipeline movements. | | | | | Noise from cutting pipelines onshore. | | ### MANAGING RISK | PIPELINES and | Option 1 Leave in-situ (with some remedial activity) | Option 2
Removal – cut & lift or reverse lay | Option 3 Burial: Trench & Drag or Fluidise & Sink | |--------------------------------------|--|--|--| | UMBILICALS | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | Activities with potential for impact if not controlled | | | | Noise from increased onshore traffic transporting the
solid wastes. | | | Water & Marine Environment | Legacy issue of leaving pipe in-situ. | | Legacy issue of leaving pipe in-situ. | | | Large quantities of contaminated liquid waste from flushing
pipes (including chemicals used to flush). | Large quantities of contaminated liquid waste from
flushing pipes (including chemicals used to flush). | Large quantities of contaminated liquid waste from
flushing pipes (including chemicals used to flush). | | | Impact of rock dumping if necessary. | Anchor pits of large shipping vessels. | Anchor pits of large shipping vessels. | | | | Dredging may be required to cut the pipes | Dredging during trenching; fluidisation of seabed. | | Environmental Risk from
Accidents | | EIA assessment should examine major accidents such as
dropping a pipe section during lifting and it hitting a live
pipeline, and to spills from pipelines and vessels. | | | Social Impact | Legacy issue of leaving pipe in-situ (e.g. impact upon fishermen). | | o Legacy issue of leaving pipe in-situ. | | | HSHCHICH). | o Potential positive impact of employment | Potential positive impact of employment | | Other Factors | Contaminated waste (Hg, LSA, Scale) in pipes and the flush
wastewater. | | Contaminated waste (Hg, LSA, Scale) in pipes and the
flush wastewater. | | | Legacy of contaminated waste remaining in pipes, if any. | | Legacy of contaminated waste remaining in pipes, if any. | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 7 POTENTIALLY SIGNIFICANT IMPACTS The previous section summarises the detailed output from the Scoping Workshop. Those issues with the greatest potential for impact are highlighted in the summary table overleaf. This table illustrates that: - There are some aspects which are common to all categories, such as the energy consumption and air emissions resulting from the increased activities and traffic both on and offshore as a result of decommissioning activities. - There are fundamental differences in impacts between leaving facilities *in-situ* (with resulting legacy concerns offshore) and removing them (typically resulting in more short-term impacts, and potentially significant impacts onshore). This is as expected. Legacy issues are discussed in more detail in Section 8. - Currently the locations of onshore dismantling, treatment and disposal facilities are not known, but they will be licensed. Owing to the large quantities of waste that could be generated during decommissioning, it is possible that expanded storage facilities may be necessary, and the associated impacts of such an expansion (if required) would need to be examined in detail in the impact assessment. - Some of the items that may come onshore are extremely large (e.g. GBS, Jacket, single lift Topsides) and it may be necessary to construct a structure inshore to temporarily hold them while they are dismantled. The potential impact of such a receiving structure would need to be assessed in detail. The potential for cumulative impacts from decommissioning Brent A, B, C and D and Brent South facilities will need to be considered in the EIA. DNV Reg. No.: 12NA8UG-7 Revision No. 5 Date : 24 May 2011 | | Table 7.1: Key Potential Environmental Issues | | | | | |-------------------|---|---|---|---|--| | CATEGORY | Option 1 | Option 2 | Option 3 | Option 4 | | | | Derogation –84m below sea level | Derogation – 55m below sea level | Full removal & onshore dismantle | - | | | Jacket | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) | Increased traffic on & offshore (energy & air emissions) | - | | | | | | Impacts from onshore deconstruction. | | | | | | | Disturbance of drill cuttings to enable full removal (marine) | | | | | | | Impacts if construct Jacket-receiving-structure inshore (marine, noise). | | | | | Leave in situ | Remove & Re-inject | Remove & Treat onshore | - | | | Drill
Cuttings | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) | Dredging of drill cuttings (marine impact, underwater noise) | Dredging of drill cuttings (marine impact, solid waste, underwater noise) | | | | Cuttings | | Increased traffic offshore (energy & air emissions) | Increased traffic on & offshore (energy & air emissions) | | | | | | Leakage of re-injected drill cuttings from wells in the long term | Large quantities of waste to transport and handle onshore. | | | | | Leave in
situ | Remove & Re-inject | Cap in situ in Cells | Remove & transport to shore | | | Cell
Sediment | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) | | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) | Contaminated wastewater from filtered cell sediment (including chemicals used to | | | Seament | Long term pollution risk after cell disintegration. | Increased traffic offshore (energy & air emissions) | Long term pollution risk after cell disintegration. | help fluidise sediment) Increased traffic on & offshore (noise, energy & air emissions) | | | | | Leakage of re-injected sediments from wells in the long term | Increased traffic offshore (noise, energy & air emissions) | Large quantities of waste | | DNV Reg. No.: 12NA8UG-7 Revision No.:5 Environmental Scoping Report for Brent Field Decommissioning EIA | | Table 7.1: Key Potential Environmental Issues | | | | | | |----------|--|--|--|----------|--|--| | CATEGORY | Option 1 | Option 2 | Option 3 | Option 4 | | | | | Complete removal - modular
dismantling with HLV | Complete removal - Piece small | Complete Removal - single lift | - | | | | Topsides | Possible expansion of onshore facilities to receive topsides (noise, social impacts). | | Possible expansion of onshore facilities to receive topsides (noise, social impacts). | | | | | | Hazardous wastes on topsides | Hazardous wastes on topsides | Hazardous wastes on topsides | | | | | | Accidental Spillages | Accidental spillages | Accidental spillages | | | | | | Wastewater from flushing topside pipes | Wastewater from flushing topside pipes | Wastewater from flushing topside pipes | | | | | | Increased traffic on & offshore (energy & air emissions) | Increased traffic on & offshore (energy & air emissions) | Increased traffic on & offshore (energy & air emissions) | | | | | | Noise from onshore deconstruction. | Noise from onshore deconstruction | Noise from onshore deconstruction. | | | | | | Material management: Onshore yard requires solid impermeable surface on deconstruction area, with drainage containment system. | Material management: Onshore yard requires solid impermeable surface on deconstruction area, with drainage containment system. | Material management: Onshore yard requires solid impermeable surface on deconstruction area, with drainage containment system. | | | | | | | | Impacts if need to construct Topside-receiving-structure inshore (marine, noise). | DNV Reg. No.: 12NA8UG-7 Revision No.:5 | | Table 7.1: Key Potential Environmental Issues | | | | | | |----------|--|--|--|----------|--|--| | CATEGORY | Option 1 | Option 2 | Option 3 | Option 4 | | | | | Leave GBS & legs in situ | Leave GBS in situ, legs removed to 70m depth | Full GBS removal & onshore dismantling | - | | | | GBS | Legacy issues of leaving GBS in situ
(impacts on fishermen & marine
environment), with long term
deterioration and eventual
disintegration | Legacy issues of leaving GBS in situ
(impacts on fishermen & marine
environment), with long term
deterioration and eventual
disintegration | | | | | | | | Increased traffic on & offshore (noise, energy & air emissions) | Increased traffic on & offshore (noise, energy & air emissions) | | | | | | | Risk for impacts on fish and marine mammals from offshore concrete deconstruction activities. | | | | | | | | deconstruction activities. | Large quantities of GBS waste, and cell sediment waste | | | | | | | | Possible expansion of onshore facilities to store GBS waste (noise, social impacts), and possible construction of GBS-receiving-structure inshore (marine, noise). | | | | | | | | Disturbance of drill cuttings (on sea floor & on top of GBS) during full GBS removal (marine) | | | | | | | Onshore noise and dust from deconstruction yard for GBS legs. | Noise and dust from processing/crushing concrete onshore | | | | | | | deconstruction yard for ODS legs. | Local community issues (traffic, social impacts) | | | | | | | | Potential accident during refloat of GBS offshore, or from inshore dismantling. | | | | | | | | | | | | DNV Reg. No.: 12NA8UG-7 Revision No.:5 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | | Table 7.1: Key Potential Environmental Issues | | | | | | |-----------|---|--|---|----------|--|--| | CATEGORY | Option 1 | Option 2 | Option 3 | Option 4 | | | | | Leave pipes in situ | Remove – cut & lift or reverse lay | Trench & Backfill/Fluidise and Sink | - | | | | Pipelines | Legacy issues of leaving in situ (impacts on fishermen & marine environment) | | Legacy issues of leaving <i>in situ</i> (impacts on fishermen & marine environment) Disturbance of seabed during dredging and fluidisation of seabed and rock dumping. | | | | | | Management of contaminated liquid effluent (including Hg, scale, LSA) from flushing pipes | Management of contaminated liquid effluent (including Hg, scale, LSA) from flushing pipes Increased traffic on & offshore (energy & air emissions) Potentially hazardous pipe constituents (e.g. asbestos, coal tar) | Management of contaminated liquid effluent (including Hg, scale, LSA) from flushing pipes Increased traffic on & offshore (energy & air emissions) | | | | DNV Reg. No.: 12NA8UG-7 Revision No.:5 #### 8 EIA APPROACH & FURTHER STUDIES #### 8.1 EIA Methodology The table 8.1 below provides an overview of the key stages typically of an EIA process. This Scoping Report covers the second stage "Scoping" detailed in the table. **Table 8.1 EIA Stages** | Stage | Description | |---------------------------------------|---| | Screening | Screening involves the determination of whether or not an individual proposal requires further assessment in an EIA. Proposal screening often uses screening criteria contained within National EIA legislation and/or loan organisation practices. | | Scoping | Scoping of the EIA study allows the study to establish the key issues and impacts to be addressed and the framework or boundary of the study. | | Analysis of Alternative
Options | The proposal should have considered alternative options, and included environment in the decision making process. | | Project Description | Description of the project including size, location, timetable, nature etc. | | Environmental Baseline
Review | Collection of environmental baseline data from literature and field measurement; may include discussions with local authorities, and other stakeholders. | | Legislative Review | A review of local, regional, national and international environmental legislation that could affect the proposed development. | | Impact Prediction & Significance | Prediction of the significant environmental impacts associated with the project; environmental risk assessment and/or modelling may be used to assess impacts. Comparison of impacts against criteria. | | Impact Mitigation | Development of controls that can be used to mitigate significant or uncertain impacts. Mitigation measures may require redesign of unacceptable aspects associated with the project. | | Environmental
Management Plan | Development of impact mitigation measures into an environmental management plan. | | Environmental
Monitoring Programme | Development of an environmental monitoring programme to verify that impact predictions are consistent with practice. | | Reporting | Reporting of the EIA process, via development of an Environmental Impact Statement (EIS) which clearly and impartially documents the impacts of the project, the proposed mitigation measures and the significance of the effects. The EIS must be suitable for describing the project to the general public, stakeholders and decision makers. | | Review | Review of EIS by regulator to determine if the report is a satisfactory assessment of the project, and contains the information required for decision making. | | Project Implementation & Operation | Regular environmental monitoring reviews should take place. Significant deviations from expectation may require retrofitting or modification of the development as well as further consultation with the Authorities and Interested and Affected parties. | ### **8.2** Approach to Assessing Some Key Environmental Issues Many of the issues in the decommissioning
EIA study will be the type of issues faced in a 'typical' EIA, and the approach to conducting the assessment should be no different to the standard approach to assessment, and the tools used (e.g. models) should be those accepted by the regulatory authorities. For example, noise modelling from ship traffic near the coastline is a well understood and practised activity. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA However, there are a number of issues relating to the decommissioning of the Brent Field that are not 'standard' assessment items; these include legacy issues: how do we assess the impact of leaving *in situ*: - GBS - Jacket - Drill cuttings - Pipelines The following sub-sections (8.2.1 - 8.2.3) discuss these components in more detail. It should be noted that Shell UK has already conducted a number of assessment studies (e.g. for Drill Cuttings, GBS and Pipelines), and these reports will be used to inform the EIA. #### 8.2.1 GBS and Jackets OSPAR Decision 98/3 allows a potential "derogation" from the general presumption of total removal, for all or part of the GBS or the 'footings' of steel jackets (>10,000 tonnes) placed in the maritime area before 9th February 1999. The Operator must present an assessment which demonstrates that there are significant reasons why an alternative to reuse, recycling or on-shore disposal is preferable. If the regulator is satisfied that the case is made, it will carry out consultation with the other OSPAR contracting parties. Where a structure remains *in situ*, there are requirements upon the Operator as follows: - Adequate maintenance of the structure - Safety of navigation - Meeting liabilities for any claims In summary, the legislation permits GBSs and Jacket footings to remain *in situ*, provided the EIA satisfactorily demonstrates that it is the best option (for example, via a comparative assessment of alternatives, which would need to include assessment of the potentially significant risk of accidents of moving the large structures). In the comparative assessment of alternatives, the environmental issues relating to leaving the GBS and Jacket *in situ* need to be taken into account. Such an assessment should take into consideration: - The social impacts relating to hazards and obstacles to fishing, both in the short term and in the long term after collapse of the structures. - Other environmental issues relating to the degradation and collapse of structures, such as impacts relating to the release of GBS contents (if left *in situ*). - The need for long term monitoring of the *in situ* structures - The operator's long term liabilities - Development of appropriate legacy management strategy #### 8.2.2 Drill Cuttings In relation to Drill Cuttings, the legacy issue is simpler. OSPAR recommendation 2006/05 sets out a Cuttings Pile Management Regime and is based on two stages. Stage 1 provides for initial screening of all cuttings piles and this has been completed by Shell. Where both the rate of oil loss and persistence are 'below' the thresholds and no other discharges have contaminated the cuttings pile, no further action is necessary and the cuttings pile may be left *in situ* to degrade naturally. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA Existing information provides reasonable confidence that the Brent cutting piles fall below the OSPAR thresholds. The Brent Field project is carrying out modelling to assess and confirm that the criteria are met and assess the long- term environmental impact of leaving the drill cuttings in place. #### 8.2.3 Pipelines Pipelines are not covered by OSPAR decision 98/3 but a Comparative Assessment of options is required under the Petroleum Act. The EIA should include a comparative assessment of pipe management options before making a decision, and ensure it includes consideration of potential impacts upon fishermen (as a key impact is often fishing gear interactions). Shell UK has already conducted a study at a high level with the main environmental assessment focusing on energy/CO₂. The EIA will need to expand upon this study and consider additional issues (as identified in Section 6 of this report) such as: - physical impacts on seabed habitats and fauna (dredging, rock dumping, trenching) - impacts from planned or unplanned discharges to sea - impacts related to possible onshore pipe disposal activities - specific compositions/materials of the various pipelines may need to be considered with regard to onshore cutting - material segregation and disposal/recycling - for the leave *in situ* options, the long term issues need to be further addressed (real risks and liability issues). The comparative assessment should differentiate between the different types of pipelines, taking into account diameter, whether they are exposed/buried/rock dumped and type of material. #### 8.3 Further Studies Required Further studies that will be required to help support and inform the EIA include: - Shell UK will need to demonstrate that they have examined all practical possibilities for collecting samples of the GBS cell contents (oil, water phase and sediment). This is because it is preferable to know as much as possible about the cell contents to inform the EIA, particularly if the polluted cell sediments are to be left *in situ* in the cells. If the outcome of the evaluation is that sampling is not possible owing to e.g. restricted access, safety reasons, then the available Brent reports and experience from similar decommissioning cases could be used to give a best estimate. - DNV consider that the drill cuttings have been adequately sampled for the purpose of the EIA. Depending on recommended management solution, additional future sampling may however be appropriate. - Existing information provides reasonable confidence that the Brent cutting piles fall below the OSPAR thresholds. The Brent Decommissioning Project is conducting modelling to assess and confirm that the criteria are met and to assess the long- term environmental impact of leaving the drill cuttings in place. - Currently the location(s) for onshore dismantling are not known and as such baseline data are not available. Shell UK will only use onshore facilities that are licensed to receive such decommissioning wastes, although the EIA will still need to demonstrate that impacts for the specific location are acceptable. Aspects that will be of relevance when selecting/evaluating possible onshore locations include: design/layout of facilities; distance to neighbours and Page 47 DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA relevant third party activities; distance to nature conservation areas; infrastructure; pollution/spill contingency; containment areas/systems; waste water treatment facilities; waste logistics; noise; environmental monitoring results. - The EIA will need to include a comparative assessment of pipeline management options before making a decision, and ensure it includes consideration of potential impacts upon fishermen. Shell UK has already conducted a study at a high level with the environmental assessment focussing upon energy/CO₂. The EIA will need to expand upon this study and consider additional issues as identified in this report such as: - physical impacts on seabed habitats and fauna (dredging, rock dumping, trenching) - impacts from planned or unplanned discharges to sea - impacts related to possible onshore scrapping activities and waste disposal - specific compositions/materials of the various pipelines may need to be considered with regard to onshore cutting - material segregation and disposal/recycling - for the leave *in situ* options, the long term legacy issues need to be further addressed (real risks and liability issues). - Clarity on the condition of the pipelines at Brent South that have been abandoned, particularly with respect to whether all pipelines have been flushed. Reports indicate that it is likely that the level of cleanliness achieved during flushing of the pipelines will be sufficient for final decommissioning, and this should be confirmed. #### 8.4 Supporting Studies Being Undertaken The Brent Decommissioning Project has initiated the following studies to provide more information on some of the potential positive and negative environmental and socio-economic effects of the decommissioning programme. - Assessment of the safety risk to fishermen from the derogated footings of the Brent Alpha steel jacket - Assessment of safety risk to mariners from derogated Brent installations - Assessment of safety risk to fishermen from decommissioned pipelines in the Brent Field - Brent Alpha cuttings pile long-term fate modelling - Brent Bravo cuttings pile long-term fate modelling - Brent Charlie cuttings pile long-term fate modelling - Brent Delta cuttings pile long-term fate modelling - Brent South cuttings pile long-term fate modelling - Short- and long-term modelling of human disturbances on Brent Delta cuttings pile - Assessment of socio-economic effects on commercial fisheries - Assessment of potential economic and employment implications of decommissioning options DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Page 48 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # PROVISIONAL MATERIAL INVENTORY APPENDIX 1 This more detailed inventory was originally prepared in 2007. The summary shown in Table 2.3 is based on this study but has been revised to include latest estimates for the weight of BC topsides and the weights of steel and concrete in the whole of the Brent Field pipeline system. DNV Reg. No.: 12NA8UG-7 Revision No.: 5 Date: 24 May 2011 Page 49 ####
Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### MANAGING RISK #### Shell Report Number BDE-80-SH-0003 | Provisional materials Inventory | | Alpha | Bravo | Charlie | Delta | Pipelines | Report ref | Notes | |---------------------------------|----------------|--------|---------|---------|---------|-----------|------------------|-----------------------------| | ABS | tonne | 2 | 2 | 2 | 2 | | Sect. 10.2.2 | Plastic pipes etc. | | Ac-228* | M Bq | 870 | 2,466 | 3,036 | 2,381 | | Sect. 9.3.3 | Low activity scale | | Acetylene gas bottles* | bottle | 32 | 32 | 32 | 32 | | Sect. 11.6 | Gas bottles | | Alloy Steel | tonne | 216 | 285 | 329 | 276 | | Sect. 8 (all) | Pipe w ork , pum ps etc. | | Aluminium (anodes + other) | tonne | 419 | 15 | 15 | 15 | 47 | Sect. 10.1.6 | Anodes, engines etc. | | Aluminium Bronze | tonne | 1 | 1 | 1 | 1 | | Sect. 10.1.12 | Pumps etc. | | Am er iciu m-241 | M Bq | 5 | 16 | 20 | 21 | | Sect. 9.2.4 | Smoke detectors | | Anodes (total) | tonne | 407 | | | | 951 | Sect. 9.14 | See Al and Zn | | Anti-foam | m ³ | | | | 0.1 | | Sect. 11.7 | Chemicals tanks | | Anti-s cale | m ³ | 1 | 1.5 | 2.5 | 4 | | Sect. 11.7 | Chemicals tanks | | Argon compressed gas* | bottle | 2 | 2 | 2 | 2 | | Sect. 11.6 | C om pressed gas | | Asbestos - blue | | n/q | n/q | n/q | n/q | | Sect. 9.4.2 | Not quantified | | As be stos - white / brown | | n/q | n/q | n/q | n/q | | Sect. 9.4.2 | N ot quantified | | As be stos (total)* | tonne | 4 | 9 | 9 | 9 | | Sect. 9.4.2 | Insulation, gaskets | | Barytes* | tonne | 2 | 4 | 5 | 5 | | Sect. 11.9.1 | R esidual bulk | | Batteries | tonne | 28.2 | 16.3 | 35.5 | 30.7 | | Sect. 9.7 | Various battery sets | | | | | | | | | Sect. 11.7 & | Chemicals tanks & | | Biocide | m ³ | 1 | 1 | 1 | 1 | | 11.3 | coolers circuits | | Brass | tonne | 1 | 1 | 1 | 1 | | Sect. 10.1.10 | Pumps, piping etc. | | Bronze | tonne | 1 | 1 | 1 | 1 | | Sect. 10.1.11 | Pumps, piping etc. | | Buna | tonne | 1 | 1 | 1 | 1 | | Sect. 10.2.6 | O rings seals etc. | | Butyl Rubber | tonne | 2 | 2 | 2 | 2 | | Sect. 10.2.3 | O rings seals etc. | | Cadmium | | n/q | n/q | n/q | n/q | | Sect. 9.7.3 | Screw/fittings coating | | Cadmium Oxide/hydroxide | tonne | 0.26 | 0.48 | 0.54 | 0.78 | | Sect. 9.7.2 | N i/Cd batteries | | Carbon Steel: topsides | tonne | 11,921 | 19,572 | 25,448 | 19,781 | | Sect. 7.3 | Plant, topsides only | | Carbon steel; casings, etc. | tonne | 5,122 | 7,003 | 7,428 | 8,404 | | Sect. 8.1-3 | Casings, utility legs, Xmas | | our son stoon, submige, stor | toc | 0,122 | ,,000 | 1,120 | 0, 101 | | 0001.0.10 | trees | | Carbon Steel GBS/Jacket | tonne | 19,234 | 33,300 | 57,700 | 35,700 | | Sect. 7.1 | Rebar in concrete, steel | | | 155 | 10,20 | | , | , | | | skirts, Alpha jacket | | Carbon Steel pipe lines | tonne | | | | | 288.922 | Sect. 6.1 | Sub-sea pipe-lines | | Cement (powder) | tonne | 2 | 3 | 3 | 3 | | Sect. 11.9.1 | Residual bulk material | | Ceramics (all types) | tonne | 5 | 5 | 5 | 5 | | Sect. 10.3.8 | White-ware etc. | | CFCs, HCFCs, HFC | | , , , | | , i | , | | See Halons | HVAC systems etc. | | Chartex/Passive Fire Protection | tonne | 27 | 103 | 122 | 80 | | Sect. 9.5 | Penetrations etc. | | Chemical residues | | | | | - 55 | | Sect. 11 | See indiv. entries | | Chrom el-Alum el | tonne | 0.01 | 0.01 | 0.01 | 0.01 | | Sect. 10.1.2 | Thermocouples etc. | | Chromium | tomic | n/q | n/q | n/q | n/q | | Sect. 10.1.3 | Alloy steel only | | Coatings (coal tar enamel) | tonne | 305 | 4 | | | 3,677 | Sect. 9.11 & 6.1 | Jacket and subsea pipelines | | Concrete | tonne | 5,278 | 132,500 | 230,000 | 142,000 | 235,174 | Sect .7.1 | GBS and piles | | Cooling medium | m³ | 7 | 7 | 7 | 7 | | Sect. 11.2 | Cooling systems | | Copper | tonne | 107 | 222 | 281 | 242 | | Sect. 8.4 & 9 | Pipes, cables, electrical | | Copper nickel alloys* | tonne | 67 | 174 | 229 | 165 | | Sect. 8.4-5 | Pipes, valves, pumps | | Cork | tonne | 2 | 2 | 2 | 2 | | Sect. 10.3.1 | Lifbouys etc. | | Corrosion Inhibitor | m ³ | 3 | 5 | 3 | 5 | | Sect. 11.7 | Fluid circuits | | Cotton | tonne | 2 | 5 | 5 | 6 | | Sect. 10.3.2 | Bedding etc. | | Cuttings residues* | tonne | 12 | 12 | 12 | 12 | | Sect. 11.10 | Cuttings | | Dem ulsifier | m ³ | 1 | 3 | 0.5 | 3 | | Sect. 11.7 | Chemicals tanks | | Desiccant (tonnes) | tonne | 7 | 7 | 7 | 7 | | Sect. 10.3.3 | Air driers | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### MANAGING RISK #### Shell Report Number BDE-80-SH-0003 | Provisional materials Inventory | | Alpha | Bravo | Charlie | Delta | Pipelines | Report ref | Notes | |---------------------------------|----------------|-------|-------|---------|-------|-----------|---------------|-----------------------------| | Die sel* | m ³ | 10 | 18 | 30 | 25 | | Sect. 11.1 | Bulk and day tanks | | Drains* | tonne | 15 | 7 | 11 | 8 | | Sect. 11.11 | Hazardous/non hazardous | | EPDM* | tonne | 23 | 5 | 23 | 11 | | Sect. 9.10.3 | C ab les | | Ethylene/ Propylene | tonne | 72 | 46 | 120 | 85 | | Sect. 9.10.3 | C ab les | | Explosives* | | n/q | n/q | n/q | n/q | | Sect. 11.5 | Not quantified | | Fire foam | m ³ | 20 | 20 | 20 | 20 | | Sect. 11.7 | Fire fight systems | | Fluorescent tubes* | nos. | 1,396 | 2,984 | 3,116 | 3,446 | | Sect. 9.6.1 | Lighting | | Formica | tonne | 2 | 2 | 2 | 2 | | Sect. 10.3.4 | Living areas | | Gas | | n/q | n/q | n/q | n/q | | Sect. 11.8 | Assume vented | | Glass | tonne | 5 | 5 | 5 | 5 | | Sect. 10.3.6 | Living areas etc | | GRP | tonne | 7 | 21 | 16 | 20 | | Sect. 10.2.7 | Replaced floor grids | | Graphite/charcoal* | tonne | 0.1 | 0.1 | 0.1 | 0.1 | | Sect. 10.3.10 | Water filters | | Gun Metal | tonne | 1 | 1 | 1 | 1 | | Sect. 10.1.8 | Pumps, valves etc. | | H2S Scavenger | m ³ | | 1.5 | 2.3 | 2 | | Sect. 11.7 | Chemicals tanks | | Halon (see CFCs) | | 230 | 585 | 330 | 400 | | Sect. 9.8 | HVAC chillers | | Heli fuel* | m ³ | 2.2 | 2.2 | 2.2 | 2.2 | | Sect. 11.13 | Aviation fuel | | Hydraulic fluids (water based) | m ³ | 3 | 2 | 3 | 3 | | Sect. 11.3 | Shutdown system | | Inconel/Nimonics | tonne | 6 | 13 | 13 | 13 | | Sect. 8.5.8 | RB211s & Avons | | Insulation * | tonne | 31 | 99 | 83 | 105 | | Sect. 9.4 | Structures, pipes | | Irid ium | | none | none | none | none | | Sect. 9.2.1 | NDT sources | | Iron (cast iron) | tonne | 3 | 3 | 3 | 3 | | Sect. 10.1.1 | Weights | | Lead* | tonne | 11 | 6 | 13 | 11 | | Sect. 9.7.1 | Batteries | | LSA Scale (topsides only) | tonne | 43 | 123 | 151 | 119 | | Sect. 9.3 | Pipes and vessels | | Lube oil * | m ³ | 20 | 39 | 36 | 38 | | Sect. 11.4 | Compressors, gas generators | | Marble | tonne | 0.1 | 0.1 | 0.1 | 0.1 | | Sect. 10.3.9 | U nkn ow n | | Melamine | tonne | 1 | 1 | 1 | 1 | | Sect. 10.3.5 | Laminates | | Mercury (lamps only) | gram | 15 | 32 | 33 | 37 | | Sect. 9.6 | Lamps (excludes pipes) | | Methanol | m ³ | 2 | 0.5 | 3.5 | 0.5 | | Sect. 11.7 | Chemical residues. | | Midel transformer oil | m ³ | 4.5 | 8 | 9 | 6 | | Sect. 9.9.5 | PCB replacement | | Monel | tonne | 0.1 | 0.1 | 0.1 | 0.1 | | Sect. 10.1.9 | Pumps, valves | | NDT Sources | GBq | none | 23 | 26.67 | none | | Sect. 9.2.1 | Testing | | Neoprene | tonne | 5 | 5 | 5 | 5 | | Sect. 10.2.4 | Various | | Nickel | | n/q | n/q | n/q | N/q | | Sect. 10.1.4 | Alloy steel only | | Ni-resist | tonne | 10 | 10 | 10 | 10 | | Sect. 10.1.5 | Pumps valves | | Nylon | tonne | 10 | 10 | 10 | 10 | | Sect. 10.2.1 | Electrical, ropes etc. | | Oil based mud | tonne | 5 | 5 | 5 | 5 | | Sect. 11.9.2 | Residues | | Other heavy metals | | | | | | | | Individual headings | | Other material | | | | | | | | Individual headings | | Oxygen compressed gas* | bottle | 2 | 2 | 2 | 2 | | Sect. 11.6 | Bottled gas | | Oxygen Scavenger | m ³ | 2 | 3 | 4 | 2.5 | | Sect. 11.7 | Chemical residues | | Paint (topsides) | tonne | 930 | 961 | 899 | 899 | | Sect. 9.11 | Paint on struct. steel | | Pb-210 * | M Bq | 256 | 725 | 893 | 700 | | Sect. 9.3.3 | In Low activity scale | | PCBs (residual in transf. oils) | ppm | <5 | <5 | <5 | <5 | | Sect. 9.9.3 | Residues in Transformer oil | | Phosphor Bronze | tonne | 1 | 1 | 1 | 1 | 1 | Sect. 10.1.7 | Pumps, valves etc | | Plastics (floor coverings) | tonne | 4 | 3 | 10 | 5 | | Sect. 9.15 | Floor coverings etc. | | Platinum | gram | 20 | 20 | 20 | 20 | 1 | Sect. 10.1.13 | Laboratory ware | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### MANAGING RISK #### Shell Report Number BDE-80-SH-0003 | Provisional materials Inventory | | Alpha | Bravo | Charlie | Delta | Pipelines | Report ref | Notes | |---------------------------------|----------------|--------|--------|---------|--------|-----------|-------------------|---------------------------------| | Polonium (Po-210)* | MBq | 1,283 | 3,637 | 4,479 | 3,512 | | Sect. 9.3.3 | Low activity scale | | Pre coat* | m ³ | 0.4 | 0.4 | 0.4 | 0.4 | | Sect. 11.7 | Water inject. filters | | Propane compressed gas* | bottle | 2 | 2 | 2 | 2 | | Sect.11.6 | Gas bottles | | PTFE* | tonne | 0.1 | 0.1 | 0.1 | 0.1 | | Sect. 10.2.8 | Seals etc. | | PVC | tonne | 32 | 19 | 65 | 61 | | Sect. 9.10.3 | Cable covering | | Radium-226 | MBq | 1,133 | 3,213 | 3,956 | 3,102 | | Sect. 9.3.3 | Low activity scale | | Residual H/Cs | tonne | 7 | 125 | 794 | 87 | n/q | Sect. 11.8 | Residues in pipes etc. | | Rubber | tonne | 20 | 20 | 20 | 20 | | Sect. 10.2.5 | Mats and floor coating | | Sewage bilges | tonne | 1 | 1 | 1 | 1 | | Sect. 11.11 | Sewage system | | Smoke detectors | no. | 125 | 400 | 490 | 520 | | Sect. 9.1 | Smoke detectors | | Stainless Steel | tonne | 459 | 1,349 | 1,732 | 1,311 | | Sect. 8 | Pipes and vessels | | Stellite* | | n/q | n/q | n/q | n/q | | Sect. 8.4.2 | Valve facings | | TEG | m ³ | 3 | 3 | 3 | 3 | | Sect. 11.7 | Chemicals residues | | Tin* | tonne | 1 | 1 | 1 | 1 | | Sect. 10.1.14 | Solder etc (not incl. anti-foul | | | | | | | | | | paint) | | Titanium | tonne | 28 | 31 | 32 | 31 | |
Sect. 8.4 & 5 | Pipes and machines | | Total activity in LSA* | MBq | 12,575 | 35,652 | 43,902 | 34,427 | | Sect. 9.3 | Low activity scale | | Tritium Lights | no. | none | none | none | none | | Sect. 9.2.5 | Tritium lights | | Wood | tonne | 20 | 20 | 20 | 20 | | | Accomod. areas, lay-down etc. | | Zinc (anodes + paint + others) | tonne | 537 | 532 | 519 | 499 | 904 | Sect. 9.13 & 9.14 | Anodes, paint, galvansing | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **SCOPING WORKSHOP CHECKLISTS APPENDIX 2** DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 Page 53 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### Category 1: Jacket - BA **Option 1:** Derogation to remain in place after removal of topsides, with legs (upper jacket) cut down to top of piles at about -84m LAT. Jacket taken onshore for recycling/disposal. **Option 2:** Derogation with legs cut down to give 55m clearance for shipping. Option 3: Full removal in pieces by HLV with onshore dismantling and recycling. #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Cate | gory 1: Jacket - BA | | | | |------|--|---------|---|---| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | N | | N. Unlikely to require any expansion onshore because there is only one jacket to be removed. | | 1.2 | Clearance of existing land, vegetation and buildings? | N | | Same as above. It is assumed that Shell UK will use an existing onshore facility. | | 1.3 | Creation of new land uses? | N | | As above 1.1/1.2 | | 1.4 | Pre-construction investigations eg boreholes, soil testing? | N | | | | 1.5 | Construction works? | Y | Sea fastenings and grillage will be required to be manufactured to fasten the jacket on barges. | Y- need to include sea
fastenings & grillage
manufacture in Energy
and Gaseous Emissions
(E&E) assessment for all
options. | | 1.6 | Demolition works? | Y | Decommissioning/demolition activities are captured throughout this checklist. | Y (but generally captured throughout checklist). Y (Option 3 only) | | | | | Option 3: Complete removal, need to assess disturbance to local habitat & disturbance at seabed | Impact of removing jacket footings, as piles will be cut 3m below seabed. | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Y | Offshore requires temporary accommodation eg floatel. | Y (e.g. anchor pits of floatel) | Page 54 DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DNV #### Category 1: Jacket - BA No. Questions to be Yes/No/ Which Characteristics of the Is the effect likely to be significant? Why? considered in Scoping Project Environment could be affected and how? Ν 1.8 Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations? Underground works 1.9 Ν including mining or tunnelling? 1.10 Reclamation works? Ν Υ 1.11 Dredging? Option 3: Y (Option 3) Drill cuttings at the footing of the Impact on seabed from steel jacket which would have to disturbance of drill be removed. cuttings Υ If inshore structure is required to Y If inshore structure is 1.12 Coastal structures e.g. seawalls, piers? receive the partial or complete required to receive the partial or complete jacket jacket 1.13 Offshore structures? Ν 1.14 Production and Options 1, 2 & 3 Y - need to include sea manufacturing fastenings/grillage Produce steel grillage that is required to transport on barges manufacture in Energy processes? and Gaseous Emissions e.g. lifting gears (E&E) assessment. Υ 1.15 Options 1, 2 & 3 - N (for all options) as Facilities for storage of goods or materials? using existing facility. - Particularly onshore storage (existing facility) for receiving - Y if need to expand steel jackets storage (Options 1, 2 & 3) Offshore store on barges Facilities for treatment or 1.16 Υ Options 1, 2 & 3: Υ disposal of solid wastes or Large quantities of solid waste liquid effluents? (steel) will be recycled 1.17 Facilities for long term Ν housing of operational workers? 1.18 New road, rail or sea traffic Υ Sea traffic and road (solid waste - Y for sea & waste traffic during construction or on trucks) - N for onshore personnel operation? commuting New road, rail, air, 1.19 Ν waterborne or other transport infrastructure including new or altered routes and stations, ports, airports etc? Closure or diversion of 1.20 Ν Options 1, 2 & 3: existing transport routes or Offshore – applicable only to infrastructure leading to transit time from site to shore, as changes in traffic platforms have exclusion zone DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 movements? Date : 24 May 2011 that vessels work within. Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### **MANAGING RISK** | Cate | gory 1: Jacket - BA | | | | |------|--|---------|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the
Project Environment could be
affected and how? | Is the effect likely to be significant? Why? | | 1.21 | New or diverted transmission lines or pipelines? | N | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | | 1.23 | Stream crossings? | N | | | | 1.24 | Abstraction or transfers of water from ground or surface waters? | N | | | | 1.25 | Changes in waterbodies or the land surface affecting drainage or run-off? | N | | | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Y | Helicopter transport and various supply vessels. | Y - Transport of jacket, materials and steel waste. To be captured as part of Energy and Gaseous Emissions (E&E) calculations, and socio – economic studies. Note that CO ₂ emissions from transport are likely to be small compared to emissions from HLV during operations. | | 1.27 | Long term dismantling or decommissioning or restoration works? | Y | Options 1 & 2: Legacy of leaving jacket, footings and drill cuttings <i>in situ</i> . Generally the location would be marked on maps when leaving structures in situ, but there will remain a hazard to trawling/shipping. Note that cutting down to -55m will accommodate shipping, but the potential impact on fishing trawling needs to be examined. Ospar permits leaving jacket footing <i>in situ</i> . Ospar footings are defined as the height of the pile stick-up (in this case, approx 60m above seabed). | Y (Option 1 & 2) | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Y | Captured throughout this checklist. | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # **MANAGING RISK** | No. Questions to be considered in Scoping Yes/No/ ? Which Characteristics of the Project Environment could be affected and how? Influx of people to an area in either temporarily or permanently? Y | Cateo | gory 1: Jacket - BA | | | | |--|-------|--------------------------|---------
--|--| | 1.29 Influx of people to an area in either temporarily or permanently? Y Covered in 1,7 | | • | Yes/No/ | Which Characteristics of the | Is the effect likely to be | | In either temporarily or permanently? 1.30 Introduction of alien species? 2 Options 1, 2 & 3: From crane ship (semi-sub) and barges, pumping out ballast water etc. Potential loss of native species in worst consequence inshore (e.g. lochs). Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact | | | | Project Environment could be | | | From crane ship (semi-sub) and barges, pumping out ballast water etc. Prom crane ship (semi-sub) and barges, pumping out ballast water etc. Potential loss of native species in worst consequence inshore (e.g. lochs). Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact 1.31 Loss of native species or genetic diversity? DECC consider that species (native species more) are of no significant conservation value. DECC consider that species growing on man-made structures are of no significant conservation value. 1.32 Any other actions? Y 1. Options 1, 2 & 3: Anchor pits – HLV Crane vessels 2. Option 3: Dredging operation for pile removal – big impact as there is impact on drill cutting disturbance 3. Option 3: Dredge the drill cuttings, excavate the area and cut the foundation piles. Need to consider removal of conductor/ risers 4. Option 3: Explosives are a last resort back-up option if non-explosive cutting fails. 5. Options 1, 2 & 3: | 1.29 | in either temporarily or | Υ | Covered in 1,7 | | | genetic diversity? jacket, although marine growth on jacket is not native species (native species must exist > 100 years). DECC consider that species growing on man-made structures are of no significant conservation value. 1.32 Any other actions? Y 1. Options 1, 2 & 3 : Anchor pits – HLV Crane vessels 2. Option 3: Dredging operation for pile removal – big impact as there is impact on drill cutting disturbance 3. Option 3: Dredge the drill cuttings, excavate the area and cut the foundation piles. Need to consider removal of conductor/ risers 4. Option 3: Explosives are a last resort backup option if non-explosive cutting fails. 5. Options 1, 2 & 3: | 1.30 | | ? | From crane ship (semi-sub) and barges, pumping out ballast water | regime) but possible (for all options). Potential loss of native species in worst consequence inshore (e.g. lochs). Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low | | Anchor pits – HLV Crane vessels 2. Option 3: Dredging operation for pile removal – big impact as there is impact on drill cutting disturbance 3. Option 3: Dredge the drill cuttings, excavate the area and cut the foundation piles. Need to consider removal of conductor/ risers 4. Option 3: Explosives are a last resort backup option if non-explosive cutting fails. 5. Options 1, 2 & 3: | 1.31 | genetic | ? | jacket, although marine growth on jacket is not native species (native species must exist > 100 years). DECC consider that species growing on man-made structures are of no significant conservation | N | | Large volumes of water may be ? present in the legs of the jacket | 1.32 | Any other actions? | Y | Anchor pits – HLV Crane vessels 2. Option 3: Dredging operation for pile removal – big impact as there is impact on drill cutting disturbance 3. Option 3: Dredge the drill cuttings, excavate the area and cut the foundation piles. Need to consider removal of conductor/ risers 4. Option 3: Explosives are a last resort backup option if non-explosive cutting fails. 5. Options 1, 2 & 3: Large volumes of water may be | Y | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate | gory 1: Jacket - BA | | | | |------|---|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 2.1 | Land especially undeveloped or agricultural land? | N | Unlikely to require expansion as there is only one jacket | N | | 2.2 | Water? | Y | Options 1, 2 & 3: Remove marine growth by using seawater | N | | 2.3 | Minerals? | Y | Use steel but will recover greater amounts | Y (for Energy and
Gaseous Emissions
(E&E) assessment as
per IOP. | | 2.4 | Aggregates? | N | | | | 2.5 | Forests and timber? | N | | | | 2.6 | Energy including electricity and fuels? | Y | Vessels, cutting tools, recycling plants etc. | Y Transport material, tugs to tow barge, DSV, support vessels | | 2.7 | Any other resources? | N | | | 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | Cate | gory 1: Jacket - BA | | | | |------|---|---------|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | N | | | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | 3.3 | Will the project affect the welfare of people e.g. by changing living Conditions? | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Categ | Category 1: Jacket - BA | | | | | | | | |-------|--|---------|---|---|--|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | | | 3.4 | Are there especially vulnerable groups of people who could be affected by the project eg hospital patients, the elderly? | Y | Local society issue | Y, potentially onshore. Although current licensed onshore facilities are intended to be used, need to demonstrate in EIA that impacts are acceptable. | | | | | | 3.5 | Any other causes? | N | | | | | | | #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | Categ | gory 1: Jacket - BA | | | | |-------|---|---------|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 4.1 | Spoil, overburden or mine wastes? | N | | N | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Y | Option 3: Removal of drill cuttings - Leaching of THC etc (covered in category 2:drill cutting) Options 1, 2 & 3: - Anodes –aluminium & zinc base? - Structural water – toxic? | ? | | 4.4 | Other industrial process wastes? | N | | | | 4.5 | Surplus product? | N | Covered above. | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | Y | Options 1, 2 & 3: - Vessels (IMO covered), - Sewage discharges are regulated offshore (require masceration). Sewage arisings onshore would be connected to existing sewers | N | | 4.7 | Construction or demolition wastes? | Υ | Options 1, 2 & 3: Steel waste | Υ | | 4.8 | Redundant machinery or equipment? | N | | | | 4.9 | Contaminated soils or other material? | N | | | | 4.10 | Agricultural wastes? | N | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Categ | Category 1: Jacket - BA | | | | | | | |-------|---------------------------------------|---------|---|--|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the
Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | | 4.11 | Any other solid wastes? | Y | Option 1, 2 & 3: Marine growth - significant amount on structure. Option 3: Drill cuttings. | Y | | | | | | | | Sampling of heavy metals: if below threshold, use in landfill or bioremediation (organic waste) | | | | | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Cate | Category 1: Jacket - BA | | | | | | |------|---|----------|--|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Y | Vessels/ helicopters/cutting tools | Y
Look at CO ₂ , SOX,
NOX and PM emissions. | | | | 5.2 | Emissions from production processes? | Y | Production of temporary steel (grillage/fastenings) for demolition work. Air emissions from waste steel recycling process (smelter) | Y - To capture in IOP
E&E emissions | | | | 5.3 | Emissions from materials handling including storage or transport? | Υ | Vessels/barges | Y - to capture in E&E emissions | | | | 5.4 | Emissions from construction activities including plant and equipment? | Y | Covered above. | | | | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Odour onshore from marine growth Jacket | Y | | | | 5.6 | Emissions from incineration of waste? | N | | | | | | 5.7 | Emissions from burning of waste in open air (eg slash material, construction debris)? | N | | | | | | 5.8 | Emissions from any other sources? | N | | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 6. Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Cate | Category 1: Jacket - BA | | | | | | | |------|---|----------|--|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | | 6.1 | From operation of equipment eg. engines, ventilation plant, crushers? | Υ | Onshore noise plus offshore underwater noise. Options 1, 2 & 3: noise from cutting offshore and onshore | Y - Options 2 & 3: Noise onshore. Y - offshore underwater, depending on the cutting technology e.g. water jet, diamond wire and explosive. Vibration to be taken into consideration. | | | | | 6.2 | From industrial or similar processes? | N | | | | | | | 6.3 | From construction or demolition? | Υ | Covered above | | | | | | 6.4 | From blasting or piling? | N | There will be no blasting operations | | | | | | 6.5 | From construction or operational traffic? | Y | Options 1, 2 & 3: Vessel for materials transport can create noise. | Υ | | | | | 6.6 | From lighting or cooling systems? | Y | Options 1, 2 & 3:
Onshore impact | N – will use existing facility | | | | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | | | | 6.8 | From any other sources? | Y | Options 1, 2 & 3 : Noise from: - Lifting from vessels to shoreCutting into pieces inshore & onshore | Υ | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Cate | Category 1: Jacket - BA | | | | | | |------|---|----------|--|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | Structural water (potentially containing contaminants/biocides) from jackets will be drained/pumped out/ discharged (limits/consent) offshore. | Y – need to examine the impact of discharge offshore, both planned and unplanned (spillage of structural water) | | | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Y | Sewage facilities onboard | N | | | | 7.3 | By deposition of pollutants emitted to air, onto the land or into water? | N | | | | | | 7.4 | From any other sources? | N | Paint on steel is normally within specification for cutting purpose/smelter process | N | | | | 7.5 | Is there a risk of long term
build up of pollutants in the
environment from
these sources? | N | No planned discharges | | | | ## 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Cate | Category 1: Jacket - BA | | | | | | |------|--|---------|---|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the
Project Environment could be
affected and how? | Is the effect likely to be significant? Why? | | | | 8.1 | From explosions, spillages, fires etc. from storage, handling, use or production of hazardous or toxic substances? | Y | For example: 1. Dropping /tilt over during lifting by both methods. Disturbance to pipes/ drill cuttings 2. Sinking during towing 3. Vessels transporting waste collide 4. Refuelling spill during operations for tow barge/support vessels /floatel spillage | Y - EIA should consider
the environmental risk
from key accidents | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | Category 1: Jacket - BA | | | | | | |------|--|---------|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the
Project Environment could be
affected and how? | Is the effect likely to be significant? Why? | | | | 8.2 | From events beyond the limits of normal environmental protection eg failure of pollution control systems? | N | Covered above | | | | | 8.3 | From any other causes? | N | Covered above | | | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Y | Potential but low probability | N | | | #### 9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Cate | Category 1: Jacket - BA | | | | | | |------|---|----------|---|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 9.1 | Changes in population size, age, structure, social groups etc? | N | | | | | | 9.2 | By resettlement of people or
demolition of homes or
communities or community
facilities eg schools,
hospitals, social facilities? | N | | | | | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | | | 9.4 | By placing increased demands on local facilities or services eg housing, education, health? | N | | | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | Offshore and offshore | Y - Impact on remote areas; impact could be positive. | | | | 9.6 | Any other causes? | N | | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Cated | Category 1: Jacket - BA | | | | | |-------
---|--------------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/
? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | Z | | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | Z | | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | Y | Options 1 & 2: Will potentially restrict other activities (e.g. trawling). Shell has reviewed reuse options for leaving jacket structure in place. | Y Need to address impact on fisheries | | | 10.4 | Will the project set a precedent for later developments? | ? | Ekofisk, Frigg and NW Hutton have already set precedents for decommissioning. | ? | | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### Category 2: Drill Cuttings BA, BB, BC, BD & BS **Option 1:** Leave *in situ* for natural degradation, as per OSPAR. **Option 2:** Remove and re-inject from one of the Brent platforms Option 3: Remove and treat onshore Note 1: Note, where jacket is removed (Jacket Option 2) & GBS is refloated (GBS Option2), drill cuttings may be removed. Note 2: For Option 1, there are no significant impacts to be considered except legacy issues. #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Categ | Category 2: Drill Cuttings BA, BB, BC, BD & BS | | | | | | |-------|--|---------|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | N | Option 3: Water is treated offshore e.g. on a barge. | N | | | | 1.2 | Clearance of existing land, vegetation and buildings? | N | | | | | | 1.3 | Creation of new land uses? | N | | | | | | 1.4 | Pre-construction investigations eg boreholes, soil testing? | Y | Sampling methods of drill cuttings to be described in EIA. | N | | | | 1.5 | Construction works? | Υ | Option 2: Minor modification of equipment required for reinjection into well. | N | | | | 1.6 | Demolition works? | N | | | | | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Y | Options 2 & 3: DSV vessel will be used, hence no temporary accommodation will be required | N | | | | 1.8 | Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations? | N | | | | | | 1.9 | Underground works including mining or tunnelling? | N | | | | | | 1.10 | Reclamation works? | N | | | | | | 1.11 | Dredging? | Υ | Options 2 & 3: Relocation on seabed & suction dredging | Y (Options 2 & 3) | | | | 1.12 | Coastal structures <i>eg</i> seawalls, piers? | N | | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cate | gory 2: Drill Cuttings BA, BB, B | C, BD & BS | | | |------|---|------------|---|---| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.13 | Offshore structures? | N | | | | 1.14 | Production and manufacturing processes? | N | | | | 1.15 | Facilities for storage of goods or materials? | Υ | Option 3: Transport to onshore. Offshore storage on barges. | N - using existing Facility. | | 1.16 | Facilities for treatment or disposal of solid wastes or liquid effluents? | Y | Option 2: - Reinjection requires drill cuttings to be in a slurry/ milling; large quantities. - Well facilities required Option 3: Large quantities of water in slurry to be treated offshore & drill cuttings to be treated onshore | Y Large quantities of solid & water waste | | 1.17 | Facilities for long term housing of operational workers? | N | 3 | | | 1.18 | New road, rail or sea traffic during construction or operation? | Y | Sea traffic to an existing onshore facility to treat drill cuttings. Existing specific facilities for e.g. oily waste facilities | Y (Options 2 & 3) for sea and waste traffic. N. For onshore personnel commuting | | 1.19 | New road, rail, air,
waterborne or other
transport infrastructure
including new or altered
routes and stations, ports,
airports etc? | N | | | | 1.20 | Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements? | N | Option 3: Offshore – applicable only to transit time from platform to shore, as platforms have exclusion zone | | | 1.21 | New or diverted transmission lines or pipelines? | N | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | | 1.23 | Stream crossings? | N | | | | 1.24 | Abstraction or transfers of water from ground or surface waters? | N | | | | 1.25 | Changes in waterbodies or the land surface affecting drainage or run-off? | N | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cateo | Category 2: Drill Cuttings BA, BB, BC, BD & BS | | | | | | |-------|--|---------|---|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Y | Helicopter transport, supply vessels etc. | Y Transport of material – drill cuttings & slurry will increase number of trips This will need to be captured as part of E&E calculation, and socio – economic studies. CO ₂ emissions from transport are likely to be small compared to emissions from HLV. | | | | 1.27 | Long term dismantling or decommissioning or restoration works? | Y | The entire checklist addresses this. Note: For Option 1 and the legacy of leaving drill cutting <i>in situ</i> . The EIA will need to examine the OSPAR requirements (2 criteria to be complied) and include modelling of longevity. | Y to be addressed in EIA | | | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Y | The entire checklist addresses this. | | | | | 1.29 | Influx of people to an area in either temporarily or permanently? | Υ | Covered above | | | | | 1.30 | Introduction of alien species? | Y | Option 3:
Ballast water from barges/vessel | ? Unlikely (owing to IMO ballast water controls) but possible (Options 2 & 3). Potential loss of native species inshore (e.g. lochs) as a worst consequence. Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact. | | | | 1.31 | Loss of native species or genetic diversity? | N | No native species. May have existing habitat over time | | | | | 1.32 | Any other actions? | N | | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA **MANAGING RISK** 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate |
gory 2: Drill Cuttings BA, BB, B | C, BD & BS | | | |------|---|------------|---|---| | No. | Questions to be considered in Scoping | Yes/No? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 2.1 | Land especially undeveloped or agricultural land? | N | | | | 2.2 | Water? | N | | | | 2.3 | Minerals? | N | | | | 2.4 | Aggregates? | N | | | | 2.5 | Forests and timber? | N | | | | 2.6 | Energy including electricity and fuels? | Y | Energy from DSV, vessels, reinjection pump, compressor | Y Energy consumed in transporting materials, MSV (multi support vessel), support vessels etc. Should be captured as part of E&E assessment. | | 2.7 | Any other resources? | N | | | 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | Categ | gory 2: Drill Cuttings BA, BB, B | C, BD & BS | | | |-------|---|------------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | Y | Option 3: Transporting the contaminated drill cuttings onshore Option 2: Handling of drill cuttings. | Y | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | 3.3 | Will the project affect the welfare of people eg by changing living conditions? | N | | | | 3.4 | Are there especially vulnerable groups of people who could be affected by the project eg hospital patients, the elderly? | ? | Using existing facilities | ? onshore. Although
current licensed onshore
facilities are intended to
be used, need to
demonstrate in EIA that
impacts are acceptable. | | 3.5 | Any other causes? | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | No. | gory 2: Drill Cuttings BA, BB, BC, BE Questions to be considered in | Yes/No/? | Which Characteristics of the | Is the effect likely to be | |------|---|----------|---|----------------------------| | 110. | Scoping | 100/110/ | Project Environment could be affected and how? | significant? Why? | | 4.1 | Spoil, overburden or mine wastes? | N | | | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Y | Options 2 & 3: Handling of contaminated drill cuttings. Option 2 has a more significant impact as slurry needs to be treated to extract water | Υ | | 4.4 | Other industrial process wastes? | N | | | | 4.5 | Surplus product? | N | Covered above | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | Υ | Sewage discharges are regulated offshore (require masceration) and sewage arising onshore would be connected to existing sewers | N | | 4.7 | Construction or demolition wastes? | N | | | | 4.8 | Redundant machinery or equipment? | N | | | | 4.9 | Contaminated soils or other material? | Υ | Option 1 : Contamination of seabed legacy issue | Y | | 4.10 | Agricultural wastes? | N | | | | 4.11 | Any other solid wastes? | Y | Options 1,2 & 3: Debris e.g. scaffold etc Operational and removal of debris clearance needs to be considered | Y | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Cateo | gory 2: Drill Cuttings BA, BB, BC, BI | O & BS | | | |-------|--|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Y | Option 3: Emissions from vessels/ helicopters/ pumps for re- injection/barges Option 3: Emissions from low temperature thermal treatment onshore of solid drill cuttings waste (to be captured in E&E assessment) | Y. Look at CO2, SOX,
NOX and PM emissions.
Vessels waiting inshore
for Option 2 to be
considered | | 5.2 | Emissions from production processes? | Y | Low thermal desorption unit (captured in 5.1) | Υ | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Categ | gory 2: Drill Cuttings BA, BB, BC, BI | D & BS | | | |-------|---|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 5.3 | Emissions from materials handling including storage or transport? | Y | Captured in 5.1. | | | 5.4 | Emissions from construction activities including plant and equipment? | N | | | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Option 3: Potential odour from drill cuttings onshore due to H2S and oil content | Y | | 5.6 | Emissions from incineration of waste? | N | No incineration. | | | 5.7 | Emissions from burning of waste in open air (e.g. slash material, construction debris)? | N | | | | 5.8 | Emissions from any other sources? | N | | | #### 6. Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Cate | gory 2: Drill Cuttings BA, BB, BC, B | D & BS | | | |------|---|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 6.1 | From operation of equipment e.g. engines, ventilation plant, crushers? | Y | Options 2 & 3: Noise from vessels required for ROV surveys of drill cuttings. | N | | 6.2 | From industrial or similar processes? | N | | | | 6.3 | From construction or demolition? | N | | | | 6.4 | From blasting or piling? | N | | | | 6.5 | From construction or operational traffic? | Y | Option 3: Noise onshore from vessels for transport of drill cuttings | Υ | | 6.6 | From lighting or cooling systems? | Y | Option 3: Onshore impact if industrial and recreational nearby, but will use existing facility | N (using existing facility) | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | 6.8 | From any other sources? | Υ | Option 3: Lifting drill cuttings from vessels to shore | Υ | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV ### 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Categ | gory 2: Drill Cuttings BA, BB, BC, BI | O & BS | | | |-------|--|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | Option 2: Reinjection potential of spillage, and leakage from injection wells (more shallow than normal wells), to contaminate seabed Options 2 & 3: Leaching into the water column during dredging/disturbance | Y | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Υ | Facilities onboard | N | | 7.3 | By deposition of pollutants emitted to
air, onto the land or into water? | N | | | | 7.4 | From any other sources? | N | | | | 7.5 | Is there a risk of long term build up of pollutants in the environment from these sources? | Y | Option 1: Legacy issue of leaving contaminated drill cuttings in situ | Y | ### 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Cate | gory 2: Drill Cuttings BA, BB, BC, BI | O & BS | | | |------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 8.1 | From explosions, spillages, fires etc. from storage, handling, use or production of hazardous or toxic substances? | N | | | | 8.2 | From events beyond the limits of normal environmental protection eg failure of pollution control systems? | N | Covered above | | | 8.3 | From any other causes? | N | Covered above | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Y | Low probability | N | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Cate | gory 2: Drill Cuttings BA, BB, BC, BI | D & BS | | | |------|---|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 9.1 | Changes in population size, age, structure, social groups etc? | N | | | | 9.2 | By resettlement of people or
demolition of homes or
communities or community
facilities eg schools,
hospitals, social facilities? | N | | | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | 9.4 | By placing increased demands
on local facilities or services eg
housing,
education, health? | N | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | | Y Impact on remote areas. Impact could be positive. | | 9.6 | Any other causes? | N | | | 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Cate | Category 2: Drill Cuttings BA, BB, BC, BD & BS | | | | | |------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | ory 2: Drill Cuttings BA, BB, BC, BD | & BS | | | |------|--|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | Y | Legacy issue for Option 1. Potential impacts on fishermen due to leaving the existing drill cutting <i>in situ</i> | Υ | | 10.4 | Will the project set a precedent for later developments? | ? | Brent may set precedents on option used on managing drill cuttings for future decommissioning projects. | ? | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | Y | Cumulative effects of Brent A, B, C & D; the interaction of the various platforms to be considered. | Y | DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 Page 73 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### Category 3: Cell Sediments BB, BC, BD Option 1: Cell sediments in situ (GBS in situ) Option 2: Cell sediments removed & re-injected offshore (GBS in situ) Option 3 Cap in situ in the cells (GBS in situ) Option 4 Cell sediments removed & disposed onshore (GBS in situ) Note 1: If GBS is refloated (GBS Option 3), cell contents will be removed at same time Note 2: For Option 1, there are no significant impacts to be considered except legacy issues. #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Cate | gory 3: Cell Sediments BB, B | C, BD | | | |------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | N | Waste will go to an existing disposal facility (oily based sludge) to be treated | | | 1.2 | Clearance of existing land, vegetation and buildings? | N | | | | 1.3 | Creation of new land uses? | N | | | | 1.4 | Pre-construction investigations eg boreholes, soil testing? | Υ | Sampling of cell contents, volume, and characterization. To be described in EIA | N | | 1.5 | Construction works? | Y | Minor modification on topsides for sampling equipment. And potential for significant modifications: - for capping cells (Option 3), - accessibility (Option 1, 2 & 4) - reinjection offshore (Option 2 | Υ | | 1.6 | Demolition works? | N | | | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Y | Options 2, 3 & 4 will require accommodation facilities, but normally there are floatels during normal operations. | N | | 1.8 | Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations? | N | | | | 1.9 | Underground works including mining or tunnelling? | N | | | | 1.10 | Reclamation works? | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **MANAGING RISK** | Cate | Category 3: Cell Sediments BB, BC, BD | | | | | |------|---|----------|--|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 1.11 | Dredging? | Y | Options 1, 2, 3 & 4. Potential impact due to disturbance of drill cuttings on top of GBS (e.g. by water–jetting) to access cells. | Y | | | 1.12 | Coastal structures <i>eg</i> seawalls, piers? | N | | | | | 1.13 | Offshore structures? | N | | | | | 1.14 | Production and manufacturing processes? | N | | | | | 1.15 | Facilities for storage of goods or materials? | N | Using existing facility | N | | | 1.16 | Facilities for treatment or disposal of solid wastes or liquid effluents? | Y | Option 4: Removal and transport to shore of cell sediments. Large quantities of water will need to be removed from the sludge
prior to transporting sediments onshore to existing facilities. Option 2: Filter wastewater | Y. Large quantities of solid waste & wastewater | | | 4 47 | Facilities for law atoms | NI | offshore and reinject. | | | | 1.17 | Facilities for long term housing of operational workers? | N | | | | | 1.18 | New road, rail or sea traffic during construction or operation? | Y | Potential road and sea traffic to existing facility (e.g. oily waste facility) to treat cell sediments. | Y for sea and waste traffic (Option 2 & 4) N for onshore personnel commuting | | | 1.19 | New road, rail, air,
waterborne or other
transport infrastructure
including new or altered
routes and stations, ports,
airports etc? | N | | - Community | | | 1.20 | Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements? | N | Option 4: Offshore – applicable only to transit from platform to shore, as platforms have exclusion zone | | | | 1.21 | New or diverted transmission lines or pipelines? | N | | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | | | 1.23 | Stream crossings? | N | | | | | | Julianii orooonigo | | | 1 | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **MANAGING RISK** | Category 3: Cell Sediments BB, BC, BD | | | | | |---------------------------------------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.24 | Abstraction or transfers of water from ground or surface waters? | Ν | | | | 1.25 | Changes in waterbodies or
the land surface affecting
drainage or run-off? | Z | | | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Υ | Helicopter transport, supply vessels etc. | Y Transport of cell sediments will increase the number of trips. To be captured as part of Energy and Gaseous Emissions (E&E) calculations. CO ₂ emissions from transport are likely to be small compared to emissions from HLV during operations. | | 1.27 | Long term dismantling or decommissioning or restoration works? | Y | Captured throughout this checklist Options 1 & 3: Legacy of leaving cell sediments in situ. Study to be conducted on degradation. Eko-tank study - '200-500' years, GBS will degrade naturally; concrete will cover the sediments/ballast sand | Y. Associated impacts will need to be addressed in EIA including eventual exposure when structure collapses and ethical and reputational aspects. | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Υ | Captured elsewhere in this table | | | 1.29 | Influx of people to an area in either temporarily or permanently? | Υ | Covered above | | | 1.30 | Introduction of alien species? | Y | Option 4: Ballast water from barges/vessel | ? (Options 2, 3 & 4) Unlikely but possible potential loss of native species inshore (e.g. lochs). Given the safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact. | | 1.31 | Loss of native species or genetic diversity? | N | | | | 1.32 | Any other actions? | N | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate | Category 3: Cell Sediments BB, BC, BD | | | | | |------|---|---------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 2.1 | Land especially undeveloped or agricultural land? | N | | | | | 2.2 | Water? | N | | | | | 2.3 | Minerals? | N | | N | | | 2.4 | Aggregates? | N | | | | | 2.5 | Forests and timber? | N | | | | | 2.6 | Energy including electricity and fuels? | Y | Options 2, 3 & 4:
Energy use by vessels, pumps,
compressors etc | Y Impact from transport, MSV (multi support vessel), support vessels etc. | | | 2.7 | Any other resources? | N | | | | 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | Cate | Category 3: Cell Sediments BB, BC, BD | | | | | | |------|---|----------|--|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | Y | Option 4: Transport the cell sediments to shore Option 2 & 4: Use of chemicals to fluidize the sediments? | Y | | | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | | | 3.3 | Will the project affect the welfare of people eg by changing living Conditions? | N | | | | | | 3.4 | Are there especially vulnerable groups of people who could be affected by the project eg hospital patients, the elderly? | ? | | Y potentially onshore. Although current licensed onshore facilities are intended to be used, need to demonstrate in EIA that impacts are acceptable. | | | | 3.5 | Any other causes? | N | | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | Categ | Category 3: Cell Sediments BB, BC, BD | | | | | |-------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the
Project Environment could be
affected and how? | Is the effect likely to be significant? Why? | | | 4.1 | Spoil, overburden or mine wastes? | Υ | Options 2 & 4 : Removed cell sediments | Y | | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Y | Options 2 & 4: Cell sediments to be filtered offshore. Option 4: Onshore remediation of solid wastes | Y | | | 4.4 | Other industrial process wastes? | N | John Mario | | | | 4.5 | Surplus product? | N | Covered above | | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | N | | | | | 4.7 | Construction or demolition wastes? | N | | | | | 4.8 | Redundant machinery or equipment? | N | | | | | 4.9 | Contaminated soils or other material? | N | | | | | 4.10 | Agricultural wastes? | N | | | | | 4.11 | Any other solid wastes? | N | | | | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Categ | Category 3: Cell Sediments BB, BC, BD | | | | | | |-------|--|----------|--|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Y | Options 2, 3 & 4: Emissions from vessels/ barges/ helicopters/ pumps etc. Potentially will use low temperature thermal desorption for sediment waste and landfill output. | Y. Look at CO2, SOX,
NOX and PM emissions. | | | | 5.2 | Emissions from production processes? | N | | | | | | 5.3 | Emissions from materials handling including storage or transport? | Υ | Options 2 & 4: Vessels/barges for transport | Y | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cate | gory 3: Cell Sediments BB, B | C, BD | | | |------|---|----------
--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 5.4 | Emissions from construction activities including plant and equipment? | N | | | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Option 4: Potential odour from cell sediments onshore | Υ | | 5.6 | Emissions from incineration of waste? | N | There will be no incineration | | | 5.7 | Emissions from burning of waste in open air (e.g. slash material, construction debris)? | N | | | | 5.8 | Emissions from any other sources? | Y? | Option 4: Consider the potential release of hydrocarbon from low thermal desorption unit onshore | Y? | #### 6. Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Cate | Category 3: Cell Sediments BB, BC, BD | | | | | |------|---|----------|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 6.1 | From operation of equipment e.g. engines, ventilation plant, crushers? | Y | Options 2 & 4 for vessels | N | | | 6.2 | From industrial or similar processes? | Υ | Option 4: Onshore thermal desorption plant | Y? | | | 6.3 | From construction or demolition? | N | | | | | 6.4 | From blasting or piling? | N | | | | | 6.5 | From construction or operational traffic? | Υ | Options 2,3 & 4: Vessels for transport of material. Potential for noise | Y | | | 6.6 | From lighting or cooling systems? | Υ | Option 4: Onshore impact (if the industrial and residential activity are nearby) | N. Will use existing licensed facility. | | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | | 6.8 | From any other sources? | N | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Cate | gory 3: Cell Sediments BB, B | C, BD | | | |------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | Option 2 : Potential to contaminate seabed from leakage from injection wells (injection wells are more shallow than normal wells) Option 4: Potential to contaminate from spillage | Y | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Y | Sewage facilities onboard | N | | 7.3 | By deposition of pollutants emitted to air, onto the land or into water? | N | | | | 7.4 | From any other sources? | N | | | | 7.5 | Is there a risk of long term build up of pollutants in the environment from these sources? | Y | Legacy issue: Options 1, 2 & 3 leaving cell sediments in situ | Y | 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Cate | gory 3: Cell Sediments BB, B | C, BD | | | |------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 8.1 | From explosions, spillages, fires etc. from storage, handling, use or production of hazardous or toxic substances? | N | | | | 8.2 | From events beyond the limits of normal environmental protection eg failure of pollution control systems? | N | Covered above | | | 8.3 | From any other causes? | N | Covered above | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Y | Low probability | N | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Cate | gory 3: Cell Sediments BB, B | C, BD | | | |------|---|---------|---|---| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 9.1 | Changes in population size, age, structure, social groups etc? | N | | | | 9.2 | By resettlement of people or
demolition of homes or
communities or community
facilities eg schools,
hospitals, social facilities? | N | | | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | 9.4 | By placing increased demands on local facilities or services eg housing, education, health? | N | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | Offshore and onshore socio-
economic impact to be addressed | Y Impact on remote areas. Impact could be positive. | | 9.6 | Any other causes? | N | | | ## 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Categ | Category 3: Cell Sediments BB, BC, BD | | | | | | |-------|---|---------|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **MANAGING RISK** | Categ | ory 3: Cell Sediments BB, B | C, BD | | | |-------|--|---------|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | N | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | N | | N | | 10.4 | Will the project set a precedent for later developments? | ? | Projects like Ekofisk have already set a precedent with respect to cell sediment. | N | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | N | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### Category 4: Topsides BA, BB, BC, BD **Option 1:** Complete removal by modular dismantling using an HLV Option 2: Piece –small dismantling offshore **Option 3:** Removal in one piece using a single lift vessel #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Categ | Category 4: Topsides BA, BB, BC, BD | | | | | |-------|---
---------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | Y | Onshore facility may require expansion (e.g. VATS expansion was required for Ekofisk, but this was not identified in the Ekofisk EIA) | ? Significant <u>if</u> there is potential expansion of the onshore facility | | | 1.2 | Clearance of existing land, vegetation and buildings? | N | Same as for 1.1 | | | | 1.3 | Creation of new land uses? | N | Onshore | As above 1.1 | | | 1.4 | Pre-construction investigations e.g. boreholes, soil testing? | N | | | | | 1.5 | Construction works? | Υ | Construction of temporary floors & scaffold required. | N | | | 1.6 | Demolition works? | Υ | Decommissioning/demolition activities are captured throughout this checklist. | | | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Y | Offshore requires temporary accommodation e.g. floatel. Onshore facility if not adequate may require additional construction space. | Y | | | 1.8 | Above ground buildings,
structures or earthworks
including linear structures,
cut and fill or excavations? | N | | | | | 1.9 | Underground works including mining or tunnelling? | N | | | | | 1.10 | Reclamation works? | N | | | | | 1.11 | Dredging? | N | | | | | 1.12 | Coastal structures <i>eg</i> seawalls, piers? | Υ | Option 3: If single lift method requires construction of inshore structure to be built to receive the entire topsides. | Y (Option 3) If construction of inshore facility is required (potential impact on marine environment, fisherman etc) | | | 1.13 | Offshore structures? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cated | Category 4: Topsides BA, BB, BC, BD | | | | | |-------|---|---------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 1.14 | Production and manufacturing processes? | Y | Steel production of grillage and sea fastenings that will be required. | Y - need to include sea
fastenings/grillage
manufacture in Energy
and Gaseous Emissions
(E&E) assessment. | | | 1.15 | Facilities for storage of goods or materials? | Y | Onshore storage at existing facility, offshore storage on barges. | N as using existing facility Y if have to expand existing facilities. (Refer to 1.1/1/2) | | | 1.16 | Facilities for treatment or disposal of solid wastes or liquid effluents? | Y | Large quantities of solid & flushing liquids from topsides pipelines. | Y Large quantities of contaminated water and solid wastes. | | | 1.17 | Facilities for long term housing of operational workers? | N | | | | | 1.18 | New road, rail or sea traffic during construction or operation? | Y | Sea traffic and road (waste on trucks) | Y for sea and waste traffic N for onshore personnel commuting | | | 1.19 | New road, rail, air,
waterborne or other
transport infrastructure
including new or altered
routes and stations, ports,
airports etc? | N | | | | | 1.20 | Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements? | N | Platforms currently have exclusion zones that vessels comply with. | | | | 1.21 | New or diverted transmission lines or pipelines? | N | | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | | | 1.23 | Stream crossings? | N | | | | | 1.24 | Abstraction or transfers of water from ground or surface waters? | N | | | | | 1.25 | Changes in waterbodies or the land surface affecting drainage or run-off? | N | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DIV | Categ | gory 4: Topsides BA, BB, BC, E | BD | | | |-------|--|---------|--|--| | No. | Questions to be considered in Scoping | Yes/No? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Y | Helicopter transport, supply vessels etc. | Y (all options) Note: Transport of material of piece small will increase number of trips. Need to capture as part of E&E calculations, and socio—economic impacts. Note that CO ₂ emissions from transport are likely to be small compared to emissions from HLV during operations. | | 1.27 | Long term dismantling or decommissioning or restoration works? | Υ | Decommissioning/dismantling activities are captured throughout this checklist. | | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Y | Decommissioning/dismantling activities are captured throughout this checklist. | | | 1.29 | Influx of people to an area either temporarily or permanently? | Υ | Covered in 1.7 | | | 1.30 | Introduction of alien species? | Y | From crane ship (semi-sub) and barges, pumping out ballast water | ? (All options). Potential loss of native species in inshore locations e.g. lochs. Given the safeguards on vessels in UKCS (such as IMO regime), this has low potential impact. | | 1.31 | Loss of native species or genetic diversity? | N | | | | 1.32 | Any other actions? | N | | | 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate | Category 4: Topsides BA, BB, BC, BD | | | | | |------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 2.1 | Land especially undeveloped or agricultural land? | Υ | Covered already in 1.1 | | | | 2.2 | Water? | Υ | Utilise seawater | N | | | 2.3 | Minerals? | Υ | Use steel but will recycle greater amounts | N | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | Category 4: Topsides BA, BB, BC, BD | | | | | |------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 2.4 | Aggregates? | N | | | | | 2.5 | Forests and timber? | N | | | | | 2.6 | Energy including electricity and fuels? | Υ | Vessels, cutting tools, forklifts | Y
SSCV/ HLV vessels.
Transport material, tugs
to tow barge, DSV | | | 2.7 | Any other resources? | Υ | Chemicals for flushing | Υ | | 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | Cate | gory 4: Topsides BA, BB, BC, E | BD | | | |------|---|--------------|--|---| | No. | Questions to be considered in Scoping | Yes/No/
? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | Y | Substances as per material inventory and chemical use / cutting tools / paints | Y | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | 3.3 | Will the project affect the welfare of people e.g. by changing living conditions? | ? | Onshore | Although current licensed onshore facilities are intended to be used, need to demonstrate in EIA that there will be no impact. | | 3.4 | Are there especially vulnerable groups of people
who could be affected by the project e.g. hospital patients, the elderly? | ? | Local society issue | Y (onshore). Although current licensed onshore facilities are intended to be used, need to demonstrate in the EIA that there will be no significant impact. | | 3.5 | Any other causes? | N | | - 1 | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | Categ | gory 4: Topsides BA, BB, BC, E | BD | | | |-------|---|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 4.1 | Spoil, overburden or mine wastes? | N | | | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Υ | LSA(NORM) & inventory waste | Υ | | 4.4 | Other industrial process wastes? | Υ | Solids and liquid waste | Υ | | 4.5 | Surplus product? | N | Covered above | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | Y | Vessels (IMO covers) Sewage discharges are regulated offshore, and sewage arising onshore would be connected to existing sewers. | N | | 4.7 | Construction or demolition wastes? | Y | Steel & material inventory waste | Y | | 4.8 | Redundant machinery or equipment? | Υ | Vessels/equipment to be land filled & recycled | Y | | 4.9 | Contaminated soils or other material? | N | | | | 4.10 | Agricultural wastes? | N | | | | 4.11 | Any other solid wastes? | Y | Debris e.g. scaffold etc Operational and removal of debris clearance needs to be considered | Y | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Categ | Category 4: Topsides BA, BB, BC, BD | | | | | |-------|--|----------|--|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Υ | Vessels/ helicopters/cutting tools | Y - CO ₂ , SOX & NOX and PM emissions. | | | 5.2 | Emissions from production processes? | Y | Production of temporary steel for demolition works. Recycling process (smelter emissions). | Y - To capture in E&E assessment. | | | 5.3 | Emissions from materials handling including storage or transport? | Υ | Vessels/barges | Υ | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # **MANAGING RISK** | Cated | Category 4: Topsides BA, BB, BC, BD | | | | | |-------|---|----------|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 5.4 | Emissions from construction activities including plant and equipment? | Y | Covered above | | | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Deconstruction work on topsidesDust issue onshore | Y | | | 5.6 | Emissions from incineration of waste? | N | | | | | 5.7 | Emissions from burning of waste in open air (eg slash material, construction debris)? | N | | | | | 5.8 | Emissions from any other sources? | N | | | | #### 6. Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Categ | Category 4: Topsides BA, BB, BC, BD | | | | | |-------|---|----------|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 6.1 | From operation of equipment e.g. engines, ventilation plant, crushers? | Y | Onshore receptors. Offshore operation, it is a controlled process | Y for onshore
N for offshore. | | | 6.2 | From industrial or similar processes? | N | | | | | 6.3 | From construction or demolition? | Υ | Covered above | | | | 6.4 | From blasting or piling? | N | No blasting | | | | 6.5 | From construction or operational traffic? | Υ | From vessels for transport of materials | Υ | | | 6.6 | From lighting or cooling systems? | Y | Potential onshore impact if industrial & receptors are adjacent. If build a new structure inshore to receive single lift topsides | N – will use existing facility. | | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Catego | Category 4: Topsides BA, BB, BC, BD | | | | | |--------|---------------------------------------|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 6.8 | From any other sources? | Y | Noise from (e.g.): - lifting from vessels to shore Cutting into pieces and dumping into skips | Y | | ### 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Categ | Category 4: Topsides BA, BB, BC, BD | | | | |-------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | There are risk in activities handling hazardous substances both onshore and offshore. Onshore facility has bunds | Y | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Y | Wastewater from flushing topside pipes. | Υ | | 7.3 | By deposition of pollutants emitted to air, onto the land or into water? | N | | | | 7.4 | From any other sources? | N | | | | 7.5 | Is there a risk of long term build up of pollutants in the environment from these sources? | N | No planned discharges | | Page 89 DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Categ | ory 4: Topsides BA, BB, BC, E | BD | | | |-------|--|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 8.1 | From explosions, spillages, fires etc from storage, handling, use or production of hazardous or toxic substances? | Y | During decommissioning, the following scenarios are examples of what may need to be considered: 1. Spillage during flushing 2. Drop small piece on pipes not hydrocarbon free, potential explosion 3. Lose a module during transport, hit a pipeline 4. Collision of vessels transporting waste 5. Single lift, topples, hit pipeline & other subsea equipment (low probability / high consequence) 6. Refuelling during operations for HLV, spillage 7 Failure of booms containment inshore | Y - EIA should consider the environmental risk from key accidents | | 8.2 | From events beyond the limits of normal environmental protection e.g. failure of pollution control systems? | Y | Covered above | | | 8.3 | From any other causes? | N | | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Y | Potential but low probability | N |
9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Cate | Category 4: Topsides BA, BB, BC, BD | | | | |------|---|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 9.1 | Changes in population size, age, structure, social groups etc? | N | | | | 9.2 | By resettlement of people or
demolition of homes or
communities or community
facilities eg schools,
hospitals, social facilities? | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | gory 4: Topsides BA, BB, BC, E | BD | | | |------|---|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | 9.4 | By placing increased demands on local facilities or services eg housing, education, health? | N | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | | Y Impact on remote areas. Impact could be positive. | | 9.6 | Any other causes? | N | | | 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Cate | Category 4: Topsides BA, BB, BC, BD | | | | |------|--|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DINV | Categ | Category 4: Topsides BA, BB, BC, BD | | | | |-------|---|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | N | | | | 10.4 | Will the project set a precedent for later developments? | ? | If single lift method is used | Υ | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | N | | | DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 rate: 24 May 2011 Page 92 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### Category 5: GBS BB, BC, BD **Option 1:** Leave *in situ*: Derogation to remain in place after removal of topsides. Legs intact and upright **Option 2:.** Partial removal: Derogation, with legs removed to about 70m depth. **Option 3:.** Full removal of GBS by refloating, then dismantling inshore and onshore. Note: For Option 1, there are no significant impacts to be considered except legacy issue. #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Categ | Category 5: GBS BB, BC, BD | | | | | |-------|--|----------|--|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | Y | Onshore facility may require expansion (eg VATS expansion was required for Ekofisk) | Y (Options 2 & 3) -
potentially significant <u>if</u>
there is a expansion of
the onshore facility | | | 1.2 | Clearance of existing land, vegetation and buildings? | N | Onshore | Same as 1.1 but significance is minor. Assumption is using existing facilities | | | 1.3 | Creation of new land uses? | N | Onshore | As above 1.1 | | | 1.4 | Pre-construction investigations eg boreholes, soil testing? | N | | | | | 1.5 | Construction works? | Y | Option 2: Removed legs on barge, require sea-fastening/grillage (these need to be manufactured). | Y (capture as part of
Energy & Gaseous
Emissions E&E
assessment) | | | 1.6 | Demolition works? | Y | Decommissioning/demolition activities are captured throughout this checklist. | Y(Options 2 & 3) | | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Y | Offshore requires temporary accommodation eg floatel. | Y (Offshore – impact of anchor pits) | | | 1.8 | Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations? | N | | | | | 1.9 | Underground works including mining or tunnelling? | N | | | | | 1.10 | Reclamation works? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cated | gory 5: GBS BB, BC, BD | | | | |-------|---|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.11 | Dredging? | Υ | May need to clear Drill Cuttings when refloating the GBS (Option 3) at the base, and on top of the cells | Y (Option 3) | | 1.12 | Coastal structures eg seawalls, piers? | Y | Possible construction of inshore structure to receive the refloated GBS (Option 3) if there is no existing facility. | Y? | | 1.13 | Offshore structures? | N | | | | 1.14 | Production and manufacturing processes? | Y | Option 2: Produce steel sea fastenings/grillage required to fasten materials on transport barges. | Y - capture as part of E&E assessment (see 1.5). | | 1.15 | Facilities for storage of goods or materials? | Y | Captured in 1.1 and 1.12. | | | 1.16 | Facilities for treatment or disposal of solid wastes or liquid effluents? | Υ | Options 2 & 3: Large quantities of solid (cement) Option 3: cell contents | Y. Large quantities of solid waste & cell contents waste | | 1.17 | Facilities for long term housing of operational workers? | N | | | | 1.18 | New road, rail or sea traffic during construction or operation? | Y | Sea traffic and road traffic if waste on trucks | Y for sea and waste traffic N for onshore personnel commuting | | 1.19 | New road, rail, air,
waterborne or other
transport infrastructure
including new or altered
routes and stations, ports,
airports etc? | N | | | | 1.20 | Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements? | N | Option 2 & 3: Platforms currently have exclusion zone that vessels comply with. | | | 1.21 | New or diverted transmission lines or pipelines? | N | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | 1.23 Stream crossings? DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 Ν Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **MANAGING RISK** | Cated | gory 5: GBS BB, BC, BD | | | |
-------|--|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 1.24 | Abstraction or transfers of water from ground or surface waters? | N | | | | 1.25 | Changes in waterbodies or
the land surface affecting
drainage or run-off? | N | | | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Y | Helicopter transport, supply vessels etc | Y Note: Transport as 'piece small' will increase number of trips. Note that CO ₂ emissions from transport are likely to be small compared to emissions from HLV for option 1 during operations. | | 1.27 | Long term dismantling or decommissioning or restoration works? | Y | Legacy of leaving the GBS in situ, with collapse in distant future, and associated future Impact and liability implications. | Y (Option 1) | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Y | Captured throughout this checklist. | | | 1.29 | Influx of people to an area in either temporarily or permanently? | Υ | Covered in 1.7 | | | 1.30 | Introduction of alien species? | Y | From crane ship (semi-sub) and barges, pumping out ballast water etc. | ? Unlikely (owing to IMO regime) but possible (options 2 & 3). Potential loss of native species in worst consequence inshore (e.g. lochs). Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact | | 1.31 | Loss of native species or genetic diversity? | N | | | | 1.32 | Any other actions? | Y | Options 2 & 3: Anchor pits – Crane vessels Option 3: High pressure water jet may be used to remove base/grout from the seabed. No explosives will be used. | Y | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate | gory 5: GBS BB, BC, BD | | | | |------|---|---------|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 2.1 | Land especially undeveloped or agricultural land? | Y | Onshore if expansion is required.
Covered above | | | 2.2 | Water? | Y | Option 2 & 3: Dust suppression when crushing concrete onshore | N | | 2.3 | Minerals? | Y | Use steel but will recover larger amounts | N | | 2.4 | Aggregates? | N | | | | 2.5 | Forests and timber? | N | | | | 2.6 | Energy including electricity and fuels? | Y | Vessels, cutting tools etc. | Y Transport material, tugs to tow barge, DSV, support vessels. | | 2.7 | Any other resources? | N | | | 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | |-----|---|----------|---|--| | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | N | | | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | 3.3 | Will the project affect the welfare of people eg by changing living conditions? | Υ | Potentially onshore | Y | | 3.4 | Are there especially vulnerable groups of people who could be affected by the project eg hospital patients, the elderly? | Y | Local societal issue | Y (onshore Options 2 & 3). Although licensed onshore facilities will be used, need to demonstrate in the EIA that impacts are acceptable. | | 3.5 | Any other causes? | N | | • | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DINV #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | Categ | ory 5: GBS BB, BC, BD | | | | |-------|---|----------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 4.1 | Spoil, overburden or mine wastes? | Υ | Options 2 & 3:
Crushed concrete waste | Υ | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Y | Option 3: - Cell contents contained in GBS - 'star cell' (spaces between cells) contain drill cuttings - drill cuttings on top of cells. | Y | | 4.4 | Other industrial process wastes? | N | | | | 4.5 | Surplus product? | N | Covered above | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | Y | Vessels (IMO covered), Sewage discharges regulated offshore, and sewage arising onshore would be connected to existing sewers. | N | | 4.7 | Construction or demolition wastes? | Y | Option 2: Crushed concrete (legs) Option 3: Crushed concrete (legs & GBS) Option 3: Drill cuttings | Y | | 4.8 | Redundant machinery or equipment? | N | | | | 4.9 | Contaminated soils or other material? | Υ | Covered above | | | 4.10 | Agricultural wastes? | N | | | | 4.11 | Any other solid wastes? | Υ | Options 2 & 3: -Marine growth on cut legs and refloated GBS | Y | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Cate | Category 5: GBS BB, BC, BD | | | | | |------|--|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Y | Vessels/ helicopters/cutting tools etc. | Y
CO ₂ , SOX & NOX and
PM emissions | | | 5.2 | Emissions from production processes? | Y | Production of temporary steel (grillage/fastenings) for demolition work. Air emissions from waste steel recycling process (smelter) | Y - To capture in IOP
E&E emissions | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | gory 5: GBS BB, BC, BD | | | | |------|---|----------|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | 5.3 | Emissions from materials handling including storage or transport? | Υ | Vessels/barges (captured above) | | | 5.4 | Emissions from construction activities including plant and equipment? | Y | Covered above | | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Deconstruction work onshore/inshore (Dust) Odour from marine growth/crushed concrete/ cell contents | Y | | 5.6 | Emissions from incineration of waste? | N | | | | 5.7 | Emissions from burning of waste in open air (eg slash material, construction debris)? | N | | | | 5.8 | Emissions from any other sources? | N | | | ### 6. Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Cate | Category 5: GBS BB, BC, BD | | | | | |------|--|----------|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely
to be significant? Why? | | | 6.1 | From operation of equipment e.g. engines, ventilation plant, crushers? | Y | Options 2 & 3: Onshore noise from crushers etc | Y Option 2 & 3: Noise onshore. Depending on cutting technology (eg water jet, diamond wire, explosives, could be underwater noise offshore to be taken into consideration. | | | 6.2 | From industrial or similar processes? | N | | | | | 6.3 | From construction or demolition? | Υ | Covered above | | | | 6.4 | From blasting or piling? | N | No blasting No piling | | | | 6.5 | From construction or operational traffic? | Y | Options 2 & 3: Vessel for transport of material. Potential for noise | Y (Options 2 & 3) | | | 6.6 | From lighting or cooling systems? | Y | Options 2 & 3: Potential onshore impact if industrial & residential areas are close to each other. | Y (Options 2 & 3) if
existing facility is
expanded or a new
inshore structure is
constructed for GBS. | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | Category 5: GBS BB, BC, BD | | | | | |------|---|----------|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | | 6.8 | From any other sources? | Y | Options 2 & 3: Noise from : - Lifting from vessels to shore - Crushing into pieces inshore & onshore | Y | | ### 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Cate | Category 5: GBS BB, BC, BD | | | | | |------|--|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | Option 3: handling of cell contents, including cell liquids. | Y | | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Y | Facilities onboard | N | | | 7.3 | By deposition of pollutants emitted to air, onto the land or into water? | N | | | | | 7.4 | From any other sources? | Y | Options 2 & 3: GBS concrete (contaminated with wax, asphalts etc) crushed onshore | Υ | | | 7.5 | Is there a risk of long term build up of pollutants in the environment from these sources? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Cate | Category 5: GBS BB, BC, BD | | | | | |------|--|---------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 8.1 | From explosions, spillages, fires etc from storage, handling, use or production of hazardous or toxic substances? | Y | For example, scenarios may include: 1. Sinking during refloat 2. Sinking during inshore dismantling 3. Lose a large concrete piece during transport, hit a pipeline 4. Vessels transporting waste collide 5. Refuelling during operations for tow barge/support vessels /floatel - spillage 6. Failure of booms inshore while pumping out cell contents | Y - EIA should consider the environmental risk from key accidents | | | 8.2 | From events beyond the limits of normal environmental protection eg failure of pollution control systems? | N | Covered above | | | | 8.3 | From any other causes? | N | | | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Υ | Potential but low probability | N | | #### 9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Cate | Category 5: GBS BB, BC, BD | | | | | |------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 9.1 | Changes in population size, age, structure, social groups etc? | N | | | | | 9.2 | By resettlement of people or
demolition of homes or
communities or community
facilities eg schools,
hospitals, social facilities? | N | | | | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | Category 5: GBS BB, BC, BD | | | | | |------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 9.4 | By placing increased demands on local facilities or services eg housing, education, health? | N | | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | | Y Impact on remote areas. Impact could be positive | | | 9.6 | Any other causes? | N | | | | 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Categ | Category 5: GBS BB, BC, BD | | | | | |-------|--|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | | | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | | | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | Y | Legacy issue for Options 1 & 2 – impact on fishermen | Y | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ### **MANAGING RISK** | Categ | Category 5: GBS BB, BC, BD | | | | | |-------|---|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? Why? | | | 10.4 | Will the project set a precedent for later developments? | Y | Brent has 3 GBS and if they are left in situ or refloated, it may set a precedent (although Ekofisk has already set a precedent). | N | | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | Y | Potential impact on pipelines eg
FLAGS Cumulative impact of Brent B,C,D. | Y | | DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 ate: 24 May 2011 Page 102 Shell (UK) Exploration & Production
Environmental Scoping Report for Brent Field Decommissioning EIA ### Category 6: Pipelines and Umbilicals (BA. BB, BC, BD, BS) Option 1: Leave in situ (minor/major intervention depending on condition of the pipe) Option 2: Removal – cut & lift for pipelines; reverse lay for umbilicals & pipelines<16 inches Option 3: Burial: Trench & backfill, or fluidize seabed, pipeline settle & sink Note 1: It is assumed that pipelines are cleaned/flushed into an injection well as proposed in Xodus report. Note 2: For Option 1, there are no significant issues to be considered except legacy issues. #### THE SCOPING CHECKLIST: QUESTIONS ON PROJECT CHARACTERISTICS 1. Will construction, operation or decommissioning of the Project involve actions which will cause physical changes in the locality (topography, land use, changes in waterbodies, etc)? | Categ | Category 6: Pipelines and Umbilicals BA, BB, BC, BD, BS | | | | | | |-------|--|----------|--|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | | 1.1 | Permanent or temporary change in land use, landcover or topography including increases in intensity of land use? | Y | Option 2: If onshore facility requires expansion to store pipelines. | Y? | | | | 1.2 | Clearance of existing land, vegetation and buildings? | N | Same as above (minor). Assumption is using existing facility | | | | | 1.3 | Creation of new land uses? | N | | As above 1.1/1.2 | | | | 1.4 | Pre-construction investigations eg boreholes, soil testing? | Y? | Option 3 : Investigation of the seabed condition prior to trenching the pipelines | N Sufficient information is likely to exist on seabed condition | | | | 1.5 | Construction works? | Υ | Pipe carrier vessels may require sea fastenings/grillage to be manufactured. | Y - need to include sea
fastenings & grillage
manufacture in Energy
and Gaseous Emissions
(E&E) assessment for all
options. | | | | 1.6 | Demolition works? | Y | Option 2: Potential issues are
Asbestos cap and coal tar enamel
on pipes. Hot cutting onshore can
emit hazardous emissions. | Y | | | | 1.7 | Temporary sites used for construction works or housing of construction workers? | Υ | Offshore requires temporary accommodation eg floatel. Onshore facility if not adequate requires additional construction space | Y (Options 2 & 3) | | | | | | | Removed Pipelines require 2/3 of
the vessel lay barge for storage
and adequate facilities onshore for
storage | | | | Page 103 DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cated | Category 6: Pipelines and Umbilicals BA, BB, BC, BD, BS | | | | | | |-------|---|----------|--|--|--|--| | No. | Questions to be | Yes/No/? | Which Characteristics of the | Is the effect likely to be | | | | | considered in Scoping | | Project Environment could be affected and how? | significant? | | | | 1.8 | Above ground buildings,
structures or earthworks
including linear structures,
cut and fill or excavations? | N | | | | | | 1.9 | Underground works including mining or tunnelling? | N | | | | | | 1.10 | Reclamation works? | N | | | | | | 1.11 | Dredging? | Υ | Option 2 & 3: Dredging may be required to cut the pipes and trench the area | Y (Options 2 & 3) | | | | 1.12 | Coastal structures eg seawalls, piers? | N | | | | | | 1.13 | Offshore structures? | N | | | | | | 1.14 | Production and manufacturing processes? | N | | | | | | 1.15 | Facilities for storage of goods or materials? | Υ | See 1.1 | Y if have to expand (Option 2) | | | | 1.16 | Facilities for treatment or disposal of solid wastes or liquid effluents? | Y | Option 2: Large quantities of concrete, plastic and rubber (umbilicals), steel (reuse/smelter) Quantities of oil contaminated flushwater to be treated offshore or to a suitable receiving facility offshore. | Y Large quantities of solid waste (pipelines) and liquid waste from flushing and cleaning the pipelines | | | | 1.17 | Facilities for long term housing of operational workers? | N | | | | | | 1.18 | New road, rail or sea traffic during construction or operation? | Y | Sea traffic and road (waste on trucks) | Y for sea (Options 2 & 3) and waste traffic (Option 2) N for onshore personnel commuting. | | | | 1.19 | New road, rail, air,
waterborne or other
transport infrastructure
including new or altered
routes and stations, ports,
airports etc? | N | | | | | | 1.20 | Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements? | Y | Options 2 & 3:
Increase in vessel traffic to
transport pipelines, equipment for
trenching the pipelines and minor
or major modifications on exposed
pipe if left in –situ. | Y
This needs to be
examined in EIA | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## **MANAGING RISK** | Cated | ory 6: Pipelines and Umbilica | Category 6: Pipelines and Umbilicals BA, BB, BC, BD, BS | | | | | |-------|--|---|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | | 1.21 | New or diverted transmission lines or pipelines? | Y | FLAGS + other relevant pipes that need to be reconfigured prior to COP and decommissioning of each platform sequence | Υ | | | | 1.22 | Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers? | N | | | | | | 1.23 | Stream crossings? | N | | | | | | 1.24 | Abstraction or transfers of water from ground or surface waters? | N | | | | | | 1.25 | Changes in waterbodies or
the land surface affecting
drainage or
run-off? | N | | | | | | 1.26 | Transport of personnel or materials for construction, operation or decommissioning? | Y | Supply vessels | Y To be captured as part of Energy and Gaseous Emissions (E&E) calculations, and socio – economic studies. Note that CO ₂ emissions from transport are likely to be small compared to emissions from HLV during operations. | | | | 1.27 | Long term dismantling or decommissioning or restoration works? | Y | Options 1 & 3: - Legacy of leaving pipelines in situ as in time it will be degrade to waste on the seabed. - Impact on fisherman. - Pollution risks from flushing and cleaning | Y | | | | 1.28 | Ongoing activity during decommissioning which could have an impact on the environment? | Y | Captured throughout this checklist. | | | | | 1.29 | Influx of people to an area in either temporarily or permanently? | Υ | Covered above | _ | | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DINV | Categ | gory 6: Pipelines and Umbilica | ls BA, BB, Bo | C, BD, BS | | |-------|--|---------------|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | 1.30 | Introduction of alien species? | Y | Options 2 & 3: From lay barge and vessels, ballast water etc. | ? Unlikely (owing to IMO control) but possible (for options 2 & 3). Potential loss of native species in worst consequence inshore (e.g. lochs). Given all safeguards on vessels in UKCS (such as IMO ballast water regime), this has a low potential impact. | | 1.31 | Loss of native species or genetic diversity? | N | | | | 1.32 | Any other actions? | Y | Option 2 & 3: Anchor pits – Lay vessels anchor. Option 3: Trenching by waterjet may impact the seabed. | Υ | ### 2. Will construction or operation of the Project use natural resources such as land, water, materials or energy, especially any resources which are non-renewable or in short supply? | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | | |------|---|----------
---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | | 2.1 | Land especially undeveloped or agricultural land? | Υ | Onshore if expansion is required. Covered above | Y if expansion is required | | | | 2.2 | Water? | N | | | | | | 2.3 | Minerals? | N | | | | | | 2.4 | Aggregates? | Υ | Option 1 Rock dumping if deemed appropriate for major intervention. | Υ | | | | 2.5 | Forests and timber? | N | | | | | | 2.6 | Energy including electricity and fuels? | Y | Vessels | Y Transport materials, laybarges, support vessels etc. | | | | 2.7 | Any other resources? | N | | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV 3. Will the Project involve use, storage, transport, handling or production of substances or materials which could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health? | Categ | gory 6: Pipelines BA, BB, BC, E | BD | | | |-------|---|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | 3.1 | Will the project involve use of substances or materials which are hazardous or toxic to human health or the environment (flora, fauna, water supplies)? | Y | Options 1, 2 & 3: Chemicals used for cleaning and flushing pipelines | Y | | 3.2 | Will the project result in changes in occurrence of disease or affect disease vectors (eg insect or water borne diseases)? | N | | | | 3.3 | Will the project affect the welfare of people eg by changing living conditions? | Υ | Options 2 & 3: Offshore facility accommodation required | Υ | | 3.4 | Are there especially vulnerable groups of people who could be affected by the project eg hospital patients, the elderly? | Y | Local society issue | Y? onshore. Although licensed onshore facilities are intended to be used, need to demonstrate in EIA that impacts are acceptable. | | 3.5 | Any other causes? | | | | #### 4. Will the Project produce solid wastes during construction or operation or decommissioning? | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | |------|---|----------|--|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to
be significant? Why? | | | 4.1 | Spoil, overburden or mine wastes? | N | | | | | 4.2 | Municipal waste (household and or commercial wastes)? | N | | | | | 4.3 | Hazardous or toxic wastes (including radioactive wastes)? | Y | Option 2: Contaminated waste in pipes eg mercury, LSA, scale Options 1, 2 & 3: Contaminated flushed liquid for disposal | Y | | | 4.4 | Other industrial process wastes? | N | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA ## MANAGING RISK DIV | Cateo | Category 6: Pipelines BA, BB, BC, BD | | | | | |-------|---|----------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to
be significant? Why? | | | 4.5 | Surplus product? | N | Covered above | | | | 4.6 | Sewage sludge or other sludges from effluent treatment? | Y | Vessels (IMO covered), Sewage discharges regulated offshore, and sewage arising onshore would be connected to existing sewers. | N | | | 4.7 | Construction or demolition wastes? | Υ | Option 2: Cut pipes from offshore, and Cement, plastics etc | Y | | | 4.8 | Redundant machinery or equipment? | N | | | | | 4.9 | Contaminated soils or other material? | N | | | | | 4.10 | Agricultural wastes? | N | | | | | 4.11 | Any other solid wastes? | Υ | Marine growth on pipes? | N | | #### 5. Will the Project release pollutants or any hazardous, toxic or noxious substances to air? | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | |------|--|----------|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | 5.1 | Emissions from combustion of fossil fuels from stationary or mobile sources? | Y | Vessels/ cutting tools etc | Y Consider CO ₂ , SOX & NOX and PM emissions from vessels waiting inshore | | | 5.2 | Emissions from production processes? | N | | | | | 5.3 | Emissions from materials handling including storage or transport? | Y | Vessels/barges | Υ | | | 5.4 | Emissions from construction activities including plant and equipment? | N | | | | Page 108 DNV Reg. No.: 12NA8UG-7 Appendix 2, Rev 5 Date : 24 May 2011 ate: 24 May 2011 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | gory 6: Pipelines BA, BB, BC, BI |) | | | |------|---|----------|---|---| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | 5.5 | Dust or odours from handling of materials including construction materials, sewage and waste? | Y | Option 2: Some old pipelines, prior to 1980, may contain asbestos materials (this will need to be clarified) in a wrap between the concrete and the steel / coal tar enamel, but may also be integrated with the concrete. Deconstruction work onshore for cutting pipes (Dust) Odour from marine growth on removed pipelines? | Y | | 5.6 | Emissions from incineration of waste? | N | | | | 5.7 | Emissions from burning of waste in open air (eg slash material, construction debris)? | N | | | | 5.8 | Emissions from any other sources? | N | | | #### Will the Project cause noise and vibration or release of light, heat energy or electromagnetic radiation? | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | |------|--|----------|--|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | 6.1 | From operation of equipment eg engines, ventilation plant, crushers? | Y | Option 2: Noise at receptors onshore from: -Cutting of pipes onshoreVessels inshore etc. | Y | | | 6.2 | From industrial or similar processes? | N | | | | | 6.3 | From construction or demolition? | Υ | Covered above | | | | 6.4 | From blasting or piling? | N | | | | | 6.5 | From construction or operational traffic? | Υ | Option 2:
Noise potential from transport
vessels | Y | | | 6.6 | From lighting or cooling systems? | Υ | Onshore – use existing facility | N | | Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | |------|---|----------|---|---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | 6.7 | From sources of electromagnetic radiation (consider effects on nearby sensitive equipment as well as people)? | N | | | | | 6.8 | From any other sources? | N | | | | ### 7. Will the Project lead to risks of contamination of land or water from releases of pollutants onto the ground or into sewers, surface waters, groundwater, coastal waters or the sea? | Cate | Category 6: Pipelines BA, BB, BC, BD | | | | | |------|--|----------|---
---|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | 7.1 | From handling, storage, use or spillage of hazardous or toxic materials? | Y | Options 1, 2 & 3: 1. Accidental release of flushed effluents (oil based) by spillage and impact 2. Waste anodes on pipelines will need to be managed. | Y | | | 7.2 | From discharge of sewage or other effluents (whether treated or untreated) to water or the land? | Y | Facilities onboard | N | | | 7.3 | By deposition of pollutants emitted to air, onto the land or into water? | N | | | | | 7.4 | From any other sources? | Y | Option2: Onshore cut pipes are cleaned and flushed by water, and the residual scale & mercury creates contaminated water. This may pose an issue | Y | | | 7.5 | Is there a risk of long term build up of pollutants in the environment from these sources? | N | No planned discharges | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA # MANAGING RISK DNV ### 8. Will there be any risk of accidents during construction or operation of the Project which could affect human health or the environment? | Cate | gory 6: Pipelines BA, BB, BC, E | 3D | | | |------|--|---------|---|---| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | 8.1 | From explosions, spillages, fires etc from storage, handling, use or production of hazardous or toxic substances? | Y | Option 2, for example: 1. Dropped pipe during lifting operations 2. Collision of vessels (pipe carriers) transporting waste | Y - EIA should consider
the environmental risk
from key accidents | | 8.2 | From events beyond the limits of normal environmental protection eg failure of pollution control systems? | N | Covered above | | | 8.3 | From any other causes? | N | Covered above | | | 8.4 | Could the project be affected by natural disasters causing environmental damage (eg floods, earthquakes, landslip, etc)? | Y | Low probability | N | #### 9. Will the Project result in social changes, for example, in demography, traditional lifestyles, employment? | Category 6: Pipelines BA, BB, BC, BD | | | | | | | |--------------------------------------|---|----------|---|--|--|--| | No. | Questions to be considered in Scoping | Yes/No/? | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | | 9.1 | Changes in population size, age, structure, social groups <i>etc</i> ? | N | | | | | | 9.2 | By resettlement of people or demolition of homes or communities or community facilities eg schools, hospitals, social facilities? | N | | | | | | 9.3 | Through in-migration of new residents or creation of new communities? | N | | | | | | 9.4 | By placing increased demands on local facilities or services eg housing, education, health? | N | | | | | | 9.5 | By creating jobs during construction or operation or causing the loss of jobs with effects on unemployment and the economy? | Y | | Y Impact on remote areas. Impact could be positive | | | | 9.6 | Any other causes? | N | | | | | DNV Reg. No.: 12NA8UG-7 Shell (UK) Exploration & Production Environmental Scoping Report for Brent Field Decommissioning EIA 10. Question - Are there any other factors which should be considered such as consequential development which could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality? | Category 6: Pipelines BA, BB, BC, BD | | | | | | | |--------------------------------------|--|---------|--|---|--|--| | No. | Questions to be considered in Scoping | Yes/No/ | Which Characteristics of the Project Environment could be affected and how? | Is the effect likely to be significant? | | | | 10.1 | Will the project lead to pressure for consequential development which could have significant impact on the environment eg more housing, new roads, new supporting industries or utilities, etc? | N | | | | | | 10.2 | Will the project lead to development of supporting facilities, ancillary development or development stimulated by the project which could have impact on the environment eg: supporting infrastructure (roads, power supply, waste or waste water treatment, etc) housing development extractive industries supply industries other? | N | | | | | | 10.3 | Will the project lead to after-use of the site which could have an impact on the environment? | Y | Options 1 & 3: Legacy issue for leaving pipelines in situ, with long term impact on fisheries and trawling (umbilical) and future creation of debris on seabed long term by degradation. | Υ | | | | 10.4 | Will the project set a precedent for later developments? | N | | N | | | | 10.5 | Will the project have cumulative effects due to proximity to other existing or planned projects with similar effects? | Y | Cumulative effects of Brent A, B,C & D. | Υ | | | DNV Reg. No.: 12NA8UG-7 ### Det Norske Veritas Det Norske Veritas (DNV) is a leading, independent provider of services for managing risk with a global presence and a network of 300 offices in 100 different countries. DNV's objective is to safeguard life, property and the environment. DNV assists its customers in managing risk by providing three categories of service: classification, certification and consultancy. Since establishment as an independent foundation in 1864, DNV has become an internationally recognised provider of technical and managerial consultancy services and one of the world's leading classification societies. This means continuously developing new approaches to health, safety, quality and environmental management, so businesses can run smoothly in a world full of surprises. Global impact for a safe and sustainable future: Learn more on www.dnv.com